108.20 Euler's totient theorem and Fermat's little theorem are generalisations of one another!

被引:0
|
作者
Karamzadeh, O. A. S. [1 ]
机构
[1] Shahid Chamran Univ, Dept Math, Ahvaz, Iran
来源
MATHEMATICAL GAZETTE | 2024年 / 108卷 / 572期
关键词
D O I
10.1017/mag.2024.73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [11] On Generalizing a Corollary of Fermat’s Little Theorem
    Gove Effinger
    The Mathematical Intelligencer, 2019, 41 : 10 - 12
  • [12] A Curious Proof of Fermat's Little Theorem
    Alkauskas, Giedrius
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (04): : 362 - 364
  • [13] Exponential Simplification using Euler's and Fermat's Theorem
    Mohan, Maya
    Devi, M. K. Kavitha
    Prakash, Jeevan, V
    1ST INTERNATIONAL CONFERENCE ON INFORMATION SECURITY & PRIVACY 2015, 2016, 78 : 714 - 721
  • [14] A String of Pearls: Proofs of Fermat's Little Theorem
    Chan, Hing-Lun
    Norrish, Michael
    JOURNAL OF FORMALIZED REASONING, 2013, 6 (01): : 63 - 87
  • [15] Primality tests based on Fermat's Little Theorem
    Agrawal, Manindra
    Distributed Computing and Networking, Proceedings, 2006, 4308 : 288 - 293
  • [16] Another Proof of Euler's Circuit Theorem
    Feghali, Carl
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (02): : 164 - 164
  • [17] Fermat's Little Theorem via Divisibility of Newton's Binomial
    Ziobro, Rafal
    FORMALIZED MATHEMATICS, 2015, 23 (03): : 215 - 229
  • [18] On Smarandache's form of the individual Fermat-Euler theorem
    Porubsky, S
    FIRST INTERNATIONAL CONFERENCE ON SMARANDACHE TYPE NOTIONS IN NUMBER THEORY, PROCEEDINGS, 1997, : 163 - 178
  • [19] Circle map, Fermat's Little Theorem, primes and pseudoprimes
    Leo, M
    Leo, RA
    Soliani, G
    CHAOS SOLITONS & FRACTALS, 2002, 14 (07) : 981 - 987
  • [20] An extension of Fermat's little theorem, and congruences for Stirling numbers
    Dilcher, K
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (10): : 936 - 940