Eigenfunctions and quantum transport with applications to trimmed Schrödinger operators

被引:0
|
作者
Hislop, Peter D. [1 ]
Kirsch, Werner [2 ]
Krishna, M. [3 ]
机构
[1] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA
[2] Fernuniv, Fak Math & Informat, D-58097 Hagen, Germany
[3] Ashoka Univ, Plot 2, Sonepat 131029, Haryana, India
关键词
SCHRODINGER-OPERATORS; ANDERSON MODEL; LOCALIZATION; SPECTRUM; DYNAMICS; DISORDER; DELOCALIZATION; SUBORDINACY;
D O I
10.1063/5.0192715
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a simple proof of dynamical delocalization, that is, time-increasing lower bounds on quantum transport for discrete, one-particle Schr & ouml;dinger operators on & ell;(2)(Z(d)), provided solutions to the Schr & ouml;dinger equation satisfy certain growth conditions. The proof is based on basic resolvent identities and the Combes-Thomas estimate on the exponential decay of the Green's function. As a consequence, we prove that generalized eigenfunctions for energies outside the spectrum of H must grow exponentially in some directions. We also prove that if H has any absolutely continuous spectrum, then the Schr & ouml;dinger operator exhibits dynamical delocalization. We apply the general result to Gamma-trimmed Schr & ouml;dinger operators, with periodic Gamma, and prove dynamical delocalization for these operators. These results also apply to the Gamma-trimmed Anderson model, providing a random, ergodic model exhibiting both dynamical localization in an energy interval and dynamical delocalization.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [2] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [3] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [4] Schrödinger eigenfunctions sharing the same modulus and applications to the control of quantum systems
    Boscain, Ugo
    Le Balc'h, Kevin
    Sigalotti, Mario
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2025,
  • [5] On the spatial extent of localized eigenfunctions for random Schrödinger operators
    Frédéric Klopp
    Jeffrey Schenker
    Communications in Mathematical Physics, 2022, 394 : 679 - 710
  • [6] Non-accretive Schrödinger operators and exponential decay of their eigenfunctions
    D. Krejčiřík
    N. Raymond
    J. Royer
    P. Siegl
    Israel Journal of Mathematics, 2017, 221 : 779 - 802
  • [7] Limit-periodic Schrödinger operators with uniformly localized eigenfunctions
    David Damanik
    Zheng Gan
    Journal d'Analyse Mathématique, 2011, 115 : 33 - 49
  • [8] Pointwise Properties of Eigenfunctions and Heat Kernels of Dirichlet–Schrödinger Operators
    F. Cipriani
    G. Grillo
    Potential Analysis, 1998, 8 : 101 - 126
  • [9] Spectral Asymptotics for Perturbed Spherical Schrödinger Operators and Applications to Quantum Scattering
    Aleksey Kostenko
    Gerald Teschl
    Communications in Mathematical Physics, 2013, 322 : 255 - 275
  • [10] Essential spectrum and exponential estimates of eigenfunctions of lattice Schrödinger and Dirac operators
    V. S. Rabinovich
    S. Roch
    Doklady Mathematics, 2009, 80 : 655 - 659