Modeling and Optimization of a Phase Change Material-Based Ocean Thermal Energy Harvester for Powering Uncrewed Underwater Vehicles

被引:0
|
作者
Ouro-Koura, Habilou [1 ,2 ]
Jung, Hyunjun [2 ,3 ]
Borca-Tasciuc, Diana-Andra [1 ]
Copping, Andrea E. [2 ]
Deng, Zhiqun [2 ,4 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA
[3] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[4] Univ Michigan, Dept Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
关键词
simulation; energy; efficiency; uncrewed underwater vehicles; phase change material; optimization; clean energy; renewable; system;
D O I
10.1115/1.4065553
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As oceans cover over 70% of the planet's surface, they represent a large reservoir of resources that remain vastly untapped. Uncrewed underwater vehicles (UUVs) are becoming a key technology for ocean exploration. Ocean thermal gradient is a permanent and reliable energy source that can be used to power UUVs using phase change material (PCM)-based thermal engines. When using PCM-based thermal engines to power UUVs, there are different energy conversion stages: thermal, hydraulic, kinetic, and electrical, dependent on a wide variety of parameters. Thus, optimization of the overall energy conversion is still a challenge for powering the increasing energy demanding UUVs for long missions. The goal of this study is to propose a PCM-based ocean thermal energy harvesting system for powering float-type UUVs such as the SOLO-II float. This reduces the cost of battery replacement and expands the float's mission time. For this purpose, we developed a theoretical model consisting of hydraulic and electrical systems, designed to provide the electrical power needed by the UUV. The hydraulic and electrical systems are implemented using matlab/simulink. Parameter values from the literature and an accumulator size of 3.78 L are used. The mass of PCM calculated for the energy harvesting system is 5.73 kg, providing a theoretical volume change of 0.78 L. Varying the value of the electrical load connected to the electrical generator, the developed model can, theoretically, provide 13.66 kJ of electrical energy, which is more than 1.5 times the energy requirement per cycle for the SOLO-II float.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Impact of fin type and orientation on performance of phase change material-based double pipe thermal energy storage
    Nicholls, R. A.
    Moghimi, M. A.
    Griffiths, A. L.
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [32] Performance of a coupled transpired solar collector-phase change material-based thermal energy storage system
    Poole, Mark R.
    Shah, Sanjay B.
    Boyette, Michael D.
    Stikeleather, Larry F.
    Cleveland, Tommy
    ENERGY AND BUILDINGS, 2018, 161 : 72 - 79
  • [33] A SIMPLIFIED MODEL FOR THE ANALYSIS OF A PHASE-CHANGE MATERIAL-BASED, THERMAL-ENERGY STORAGE-SYSTEM
    KONDEPUDI, S
    SOMASUNDARAM, S
    ANAND, NK
    HEAT RECOVERY SYSTEMS & CHP, 1988, 8 (03): : 247 - 254
  • [34] Thermal Modeling of Melting of Nano based Phase Change Material for Improvement of Thermal Energy Storage
    Sushobhan, B. R.
    Kar, S. P.
    INTERNATIONAL CONFERENCE ON RECENT ADVANCEMENT IN AIR CONDITIONING AND REFRIGERATION, RAAR 2016, 2017, 109 : 385 - 392
  • [35] A Neural Network-Based Optimization Of Thermal Performance Of Phase Change Material-Based Finned Heat SinksAn Experimental Study
    Baby, R.
    Balaji, C.
    EXPERIMENTAL HEAT TRANSFER, 2013, 26 (05) : 431 - 452
  • [36] Numerical modeling and experimental validation of a phase change material-based compact cascade cooling system for enhanced thermal management
    Kim, Su-Ho
    Heu, Chang Sung
    Kim, Dong Rip
    Kang, Seok-Won
    APPLIED THERMAL ENGINEERING, 2020, 164
  • [37] Assessment of a novel phase change material-based thermal caisson for geothermal heating and cooling
    Alavy, Masih
    Peiris, Michael
    Wang, Julie
    Rosen, Marc A.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 234
  • [38] A machine learning methodology for the diagnosis of phase change material-based thermal management systems
    Anooj, G. Venkata Sai
    Marri, Girish Kumar
    Balaji, C.
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [39] Phase change material-based building architecture for thermal management in residential and commercial establishments
    Pasupathy, A.
    Velraj, R.
    Seeniraj, R. V.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (01): : 39 - 64
  • [40] Deep Learning-based Self-scheduling of Virtual Energy Hub Considering Phase Change Material-based Thermal Energy Storage
    Seyfi, Mohammad
    Mehdinejad, Mehdi
    Shayanfar, Heidarali
    2021 11TH SMART GRID CONFERENCE (SGC), 2021, : 402 - 406