Digital Publics and the Ukraine Dilemma: Topic Modelling of the Cumulative Twitter Discussion

被引:0
|
作者
Sytnik, Anna [1 ,3 ]
Chernikova, Polina [2 ,3 ]
Vorontsov, Konstantin [2 ,3 ]
Bazlutckaia, Mariia [2 ,3 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[3] Moscow State Inst Int Relat, Moscow 119454, Russia
来源
SOCIAL COMPUTING AND SOCIAL MEDIA, PT III, SCSM 2024 | 2024年 / 14705卷
关键词
Russian-Ukrainian conflict; Digital publics; Information warfare; Topic modelling; Twitter discussion; INFORMATION WARFARE; SOCIAL MEDIA; CONFLICT; USERS;
D O I
10.1007/978-3-031-61312-8_13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we explore on what topics and to what extent digital publics - publics that exist on Twitter and share common topics - contributed to the global intensifying information warfare about Ukraine in the world. We use probabilistic topic modelling with time series for 3,676,245 unique tweets with the keyword 'Ukraine' or 100 political or regional hashtags in English or Russian written by 960,422 unique users for the period from 30 August 2021 to 24 February 2022. We reveal 38 politically significant topics (23 persistent topics and 15 event topics) and explore the scope of discussion and its dependency on political events. The application of SNP metric to tweets by topics allow us to carefully study and then describe the political ideas and arguments offered by influential ordinary Twitter users in online information confrontation. We demonstrate the process of cumulative formation of global clusters of digital publics on some important topics with regard to the approaching escalation of the Russian-Ukrainian conflict.
引用
收藏
页码:190 / 207
页数:18
相关论文
共 50 条
  • [41] Topic modelling as a method for framing analysis of news coverage of the Russia-Ukraine war in 2022-2023
    Verbytska, Anna
    LANGUAGE & COMMUNICATION, 2024, 99 : 174 - 193
  • [42] Using Twitter to understand spatial-temporal changes in urban green space topics based on structural topic modelling
    Cui, Nan
    Malleson, Nick
    Houlden, Vikki
    Yan, Yingwei
    Comber, Alexis
    CITIES, 2025, 157
  • [43] Tweet topics on cancer among Indian Twitter users—computational approach using latent Dirichlet allocation topic modelling
    Thilagavathi Ramamoorthy
    Bagavandas Mappillairaju
    Journal of Computational Social Science, 2023, 6 (2): : 1033 - 1054
  • [44] Digital voice-of-customer processing by topic modelling algorithms: insights to validate empirical results
    Barravecchia, Federico
    Mastrogiacomo, Luca
    Franceschini, Fiorenzo
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2022, 39 (06) : 1453 - 1470
  • [45] Canadian politicians' rhetoric on Twitter/X: Analysing prejudice and inclusion towards Muslims using structural topic modelling and rhetorical analysis
    Shayegh, John
    Sumantry, David
    Jagayat, Arvin
    Choma, Becky
    BRITISH JOURNAL OF SOCIAL PSYCHOLOGY, 2024, 63 (02) : 857 - 878
  • [46] Exploring the public's perception of gambling addiction on Twitter during the COVID-19 pandemic: Topic modelling and sentiment analysis
    Fino, Emanuele
    Hanna-Khalil, Bishoy
    Griffiths, Mark D.
    JOURNAL OF ADDICTIVE DISEASES, 2021, 39 (04) : 489 - 503
  • [47] Tweet topics on cancer among Indian Twitter users-computational approach using latent Dirichlet allocation topic modelling
    Ramamoorthy, Thilagavathi
    Mappillairaju, Bagavandas
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2023, 6 (02): : 1033 - 1054
  • [48] Digital Music Copyright Protection Dilemma-a Discussion on Draft Amendments of China's Copyright Law
    Guo, Yimeei
    Hu, Weiwei
    TWELFTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, 2013, : 76 - 80
  • [49] Navigating the Digital Neurolandscape: Analyzing the Social Perception of and Sentiments Regarding Neurological Disorders through Topic Modeling and Unsupervised Research Using Twitter
    Domingo-Espineira, Javier
    Fraile-Martinez, Oscar
    Garcia-Montero, Cielo
    Montero, Maria
    Varaona, Andrea
    Lara-Abelenda, Francisco J.
    Ortega, Miguel A.
    Alvarez-Mon, Melchor
    Alvarez-Mon, Miguel Angel
    INFORMATION, 2024, 15 (03)
  • [50] MODELLING THE LAST OF THE "MOVIES": DISCUSSION AND DIGITAL SURVEY OF THE EOTHEN FORMERLY ML286
    Rodriguez-Navarro, Pablo
    Wragg, Eliott
    Verdiani, Giorgio
    Gil-Piqueras, Teresa
    VIRTUAL ARCHAEOLOGY REVIEW, 2021, 12 (25): : 57 - 72