Digital Publics and the Ukraine Dilemma: Topic Modelling of the Cumulative Twitter Discussion

被引:0
|
作者
Sytnik, Anna [1 ,3 ]
Chernikova, Polina [2 ,3 ]
Vorontsov, Konstantin [2 ,3 ]
Bazlutckaia, Mariia [2 ,3 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
[3] Moscow State Inst Int Relat, Moscow 119454, Russia
来源
SOCIAL COMPUTING AND SOCIAL MEDIA, PT III, SCSM 2024 | 2024年 / 14705卷
关键词
Russian-Ukrainian conflict; Digital publics; Information warfare; Topic modelling; Twitter discussion; INFORMATION WARFARE; SOCIAL MEDIA; CONFLICT; USERS;
D O I
10.1007/978-3-031-61312-8_13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we explore on what topics and to what extent digital publics - publics that exist on Twitter and share common topics - contributed to the global intensifying information warfare about Ukraine in the world. We use probabilistic topic modelling with time series for 3,676,245 unique tweets with the keyword 'Ukraine' or 100 political or regional hashtags in English or Russian written by 960,422 unique users for the period from 30 August 2021 to 24 February 2022. We reveal 38 politically significant topics (23 persistent topics and 15 event topics) and explore the scope of discussion and its dependency on political events. The application of SNP metric to tweets by topics allow us to carefully study and then describe the political ideas and arguments offered by influential ordinary Twitter users in online information confrontation. We demonstrate the process of cumulative formation of global clusters of digital publics on some important topics with regard to the approaching escalation of the Russian-Ukrainian conflict.
引用
收藏
页码:190 / 207
页数:18
相关论文
共 50 条
  • [1] Topic Modelling for Identification of Vaccine Reactions in Twitter
    Habibabadi, Sedigheh Khademi
    Haghighi, Pari Delir
    PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCIENCE WEEK MULTICONFERENCE (ACSW 2019), 2019,
  • [2] Using Latent Dirichlet Allocation for Topic Modelling in Twitter
    Ostrowski, David Alfred
    2015 IEEE 9TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2015, : 493 - 497
  • [3] Institutional communication in the digital publics: The communicative repertoire of the Hamburg Police on Twitter
    Androutsopoulos, Jannis
    Maas, Nikolaus
    ZEITSCHRIFT FUR GERMANISTISCHE LINGUISTIK, 2024, 52 (01): : 34 - 64
  • [4] AD-HOC PUBLICS AND INFLUENCERS ON THE RUSSIAN TWITTER: THE CASE OF DISCUSSION ON MIGRANTS
    Bodrunova, Svetlana S.
    Litvinenko, Anna A.
    Nigmatullina, Kamilla R.
    Blekanov, Ivan S.
    Smolyarova, Anna S.
    SGEM 2016, BK 1: PSYCHOLOGY AND PSYCHIATRY, SOCIOLOGY AND HEALTHCARE, EDUCATION CONFERENCE PROCEEDINGS, VOL II, 2016, : 73 - 80
  • [5] Topic Modelling Twitter Data with Latent Dirichlet Allocation Method
    Negara, Edi Surya
    Triadi, Dendi
    Andryani, Ria
    2019 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS 2019), 2019, : 386 - 390
  • [6] Pattern Recognition of Twitter Users Using Semantic Topic Modelling
    Srinivasan, R.
    Senthilraja, M.
    Iniyan, S.
    2017 IEEE INTERNATIONAL CONFERENCE ON IOT AND ITS APPLICATIONS (IEEE ICIOT), 2017,
  • [7] Data Aggregation Of Tweets And Topic Modelling Based On The Twitter Dataset
    Srinivasan, Vignesh
    Chandrasekaran, K.
    2021 THE 3RD INTERNATIONAL CONFERENCE ON BIG DATA ENGINEERING AND TECHNOLOGY, BDET 2021, 2021, : 15 - 20
  • [8] Twitter trends in #Parasitology determined by text mining and topic modelling
    Ellis, John T.
    Reichel, Michael P.
    CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES, 2023, 4
  • [9] A Topology of Twitter Tactics: Tracing the Rhetorical Dimensions and Digital Labor of Networked Publics
    Alfonzo, Paige
    SOCIAL MEDIA + SOCIETY, 2021, 7 (02):
  • [10] Impact of COVID-19 on Multiple Sclerosis Topic Discussion on Twitter
    Giunti, Guido
    Claes, Maelick
    Dorronzoro Zubiete, Enrique
    Rivera-Romero, Octavio
    Gabarron, Elia
    PUBLIC HEALTH AND INFORMATICS, PROCEEDINGS OF MIE 2021, 2021, 281 : 865 - 869