Utilizing Machine Learning and Deep Learning Approaches for the Detection of Cyberbullying Issues

被引:0
|
作者
Ostayeva, Aiymkhan [1 ]
Kozhamkulova, Zhazira [2 ]
Kozhamkulova, Zhadra [3 ]
Aimakhanov, Yerkebulan [3 ]
Abylkhassenova, Dina [3 ]
Serik, Aisulu [3 ]
Turganbay, Kuralay [4 ]
Tenizbayev, Yegenberdi [5 ]
机构
[1] Korkyt Ata Kyzylorda Univ, Kyzylorda, Kazakhstan
[2] Abai Kazakh Natl Pedag Univ, Alma Ata, Kazakhstan
[3] Almaty Univ Power Engn & Telecommun, Alma Ata, Kazakhstan
[4] Kazakh Automobile & Rd Inst, Alma Ata, Kazakhstan
[5] Cent Asian Innovat Univ, Shymkent, Kazakhstan
关键词
-Machine learning; cyberbullying; feature engineering; feature extraction; feature selection; HARASSMENT; TWITTER;
D O I
10.14569/IJACSA.2024.01506117
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This research paper delves into the intricate domain of cyberbullying detection on social media, addressing the pressing issue of online harassment and its implications. The study encompasses a comprehensive exploration of key aspects, including data collection and preprocessing, feature engineering, machine learning model selection and training, and the application of robust evaluation metrics. The paper underscores the pivotal role of feature engineering in enhancing model performance by extracting relevant information from raw data and constructing meaningful features. It highlights the versatility of supervised machine learning techniques such as Support Vector Machines, Na & iuml;ve Bayes, Decision Trees, and others in the context of cyberbullying detection, emphasizing their ability to learn patterns and classify instances based on labeled data. Furthermore, it elucidates the significance of evaluation metrics like accuracy, precision, recall, F1-score, and AUC-ROC in quantitatively assessing model effectiveness, providing a comprehensive understanding of the model's performance across different classification tasks. By providing valuable insights and methodologies, this research contributes to the ongoing efforts to combat cyberbullying, ultimately promoting safer online environments and safeguarding individuals from the pernicious effects of online harassment.
引用
收藏
页码:1154 / 1161
页数:8
相关论文
共 50 条
  • [41] A Machine Learning Approach to Cyberbullying Detection in Arabic Tweets
    Musleh, Dhiaa
    Rahman, Atta
    Alkherallah, Mohammed Abbas
    Al-Bohassan, Menhal Kamel
    Alawami, Mustafa Mohammed
    Alsebaa, Hayder Ali
    Alnemer, Jawad Ali
    Al-Mutairi, Ghazi Fayez
    Aldossary, May Issa
    Aldowaihi, Dalal A.
    Alhaidari, Fahd
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1033 - 1054
  • [42] Machine Learning and Deep Learning Approaches for CyberSecurity: A Review
    Halbouni, Asmaa
    Gunawan, Teddy Surya
    Habaebi, Mohamed Hadi
    Halbouni, Murad
    Kartiwi, Mira
    Ahmad, Robiah
    IEEE ACCESS, 2022, 10 : 19572 - 19585
  • [43] Cyberbullying Detection for Urdu Language Using Machine Learning
    Mustafa, Hamza
    Zafar, Kashif
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 244 - 257
  • [44] A Review on Deep-Learning-Based Cyberbullying Detection
    Hasan, Md. Tarek
    Hossain, Md. Al Emran
    Mukta, Md. Saddam Hossain
    Akter, Arifa
    Ahmed, Mohiuddin
    Islam, Salekul
    FUTURE INTERNET, 2023, 15 (05)
  • [45] CYBERBULLYING DETECTION ON TIKTOK USING A DEEP LEARNING APPROACH
    Stoleriu, Razvan
    Nascu, Andrei
    Pop, Florin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2025, 87 (01): : 5 - 20
  • [46] Cyberbullying detection solutions based on deep learning architectures
    Celestine Iwendi
    Gautam Srivastava
    Suleman Khan
    Praveen Kumar Reddy Maddikunta
    Multimedia Systems, 2023, 29 : 1839 - 1852
  • [48] Cyberbullying detection solutions based on deep learning architectures
    Iwendi, Celestine
    Srivastava, Gautam
    Khan, Suleman
    Maddikunta, Praveen Kumar Reddy
    MULTIMEDIA SYSTEMS, 2023, 29 (03) : 1839 - 1852
  • [49] Cyberbullying detection from tweets using deep learning
    Bharti, Shubham
    Yadav, Arun Kumar
    Kumar, Mohit
    Yadav, Divakar
    KYBERNETES, 2022, 51 (09) : 2695 - 2711
  • [50] Optimized Twitter Cyberbullying Detection based on Deep Learning
    Al-Ajlan, Monirah A.
    Ykhlef, Mourad
    2018 21ST SAUDI COMPUTER SOCIETY NATIONAL COMPUTER CONFERENCE (NCC), 2018,