CBAs: Character-level Backdoor Attacks against Chinese Pre-trained Language Models

被引:0
|
作者
He, Xinyu [1 ]
Hao, Fengrui [2 ]
Gu, Tianlong [2 ]
Chang, Liang [1 ]
机构
[1] Guilin Univ Elect Technol, Guilin, Guangxi, Peoples R China
[2] Jinan Univ, Engn Res Ctr Trustworthy AI, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Pre-trained language models; backdoor attacks; Chinese; character;
D O I
10.1145/3678007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pre-trained language models (PLMs) aim to assist computers in various domains to provide natural and efficient language interaction and text processing capabilities. However, recent studies have shown that PLMs are highly vulnerable to malicious backdoor attacks, where triggers could be injected into the models to guide them to exhibit the expected behavior of the attackers. Unfortunately, existing research on backdoor attacks has mainly focused on English PLMs and paid less attention to Chinese PLMs. Moreover, these extant backdoor attacks do not work well against Chinese PLMs. In this article, we disclose the limitations of English backdoor attacks against Chinese PLMs, and propose the character-level backdoor attacks (CBAs) against the Chinese PLMs. Specifically, we first design three Chinese trigger generation strategies to ensure that the backdoor is effectively triggered while improving the effectiveness of the backdoor attacks. Then, based on the attacker's capabilities of accessing the training dataset, we develop trigger injection mechanisms with either the target label similarity or the masked language model, which select the most influential position and insert the trigger to maximize the stealth of backdoor attacks. Extensive experiments on three major natural language processing tasks in various Chinese PLMs and English PLMs demonstrate the effectiveness and stealthiness of our method. In addition, CBAs have very strong resistance against three state-of-the-art backdoor defense methods.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning
    Jia, Jinyuan
    Liu, Yupei
    Gong, Neil Zhenqiang
    43RD IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2022), 2022, : 2043 - 2059
  • [22] Exploiting Word Semantics to Enrich Character Representations of Chinese Pre-trained Models
    Li, Wenbiao
    Sun, Rui
    Wu, Yunfang
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 3 - 15
  • [23] Improving Braille-Chinese translation with jointly trained and pre-trained language models
    Huang, Tianyuan
    Su, Wei
    Liu, Lei
    Cai, Chuan
    Yu, Hailong
    Yuan, Yongna
    DISPLAYS, 2024, 82
  • [24] Red Alarm for Pre-trained Models: Universal Vulnerability to Neuron-level Backdoor Attacks (vol 20, pg 180, 2023)
    Zhang, Zhengyan
    Xiao, Guangxuan
    Li, Yongwei
    Lv, Tian
    Qi, Fanchao
    Liu, Zhiyuan
    Wang, Yasheng
    Jiang, Xin
    Sun, Maosong
    MACHINE INTELLIGENCE RESEARCH, 2024, 21 (06) : 1214 - 1214
  • [25] Annotating Columns with Pre-trained Language Models
    Suhara, Yoshihiko
    Li, Jinfeng
    Li, Yuliang
    Zhang, Dan
    Demiralp, Cagatay
    Chen, Chen
    Tan, Wang-Chiew
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1493 - 1503
  • [26] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512
  • [27] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [28] Deciphering Stereotypes in Pre-Trained Language Models
    Ma, Weicheng
    Scheible, Henry
    Wang, Brian
    Veeramachaneni, Goutham
    Chowdhary, Pratim
    Sung, Alan
    Koulogeorge, Andrew
    Wang, Lili
    Yang, Diyi
    Vosoughi, Soroush
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 11328 - 11345
  • [29] Knowledge Rumination for Pre-trained Language Models
    Yao, Yunzhi
    Wang, Peng
    Mao, Shengyu
    Tan, Chuanqi
    Huang, Fei
    Chen, Huajun
    Zhang, Ningyu
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3387 - 3404
  • [30] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246