A Multi-Objective Optimization Method for Shelter Site Selection Based on Deep Reinforcement Learning

被引:0
|
作者
Zhang, Di [1 ,2 ]
Meng, Huan [1 ,2 ]
Wang, Moyang [1 ,2 ]
Xu, Xianrui [3 ]
Yan, Jianhai [4 ]
Li, Xiang [1 ,2 ,5 ,6 ,7 ]
机构
[1] East China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai, Peoples R China
[2] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[3] Shanghai Univ Sport, Sch Econ & Management, Shanghai, Peoples R China
[4] Univ Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
[5] East China Normal Univ, Low Altitude Econ Spatial Intelligence Technol Res, Shanghai, Peoples R China
[6] East China Normal Univ, Inst Cartog, Shanghai, Peoples R China
[7] East China Normal Univ, Chongqing Key Lab Precis Opt, Chongqing Inst, Chongqing, Peoples R China
关键词
deep reinforcement learning; emergency shelter; multi-objective optimization; site selection; FACILITY LOCATION; SPATIAL-ANALYSIS; MODEL; EARTHQUAKE; ALGORITHM; GIS; FRAMEWORK;
D O I
10.1111/tgis.13252
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Urban emergency shelters are a special type of public service facility, and their planning and construction are directly related to the safety of urban residents' lives and property, as well as to the sustainable development of the city. Existing research on the site selection of shelters is not ideal when dealing with large-scale scenarios and fails to accurately reflect the actual situation. To address this issue, this study proposes an emergency shelter site selection model based on deep reinforcement learning, IAM-PPO. This model constructs the site selection problem as a Markov Decision Process and uses deep learning to extract information from the site selection scenario. It finds the final solution for shelter locations through continuous exploration and learning. To improve the training efficiency of the model, the action masking process is innovatively applied to the model. The research results and ablation experiments using Shanghai as a case study prove that, owing to the diversity of shelter service ranges and action masking mechanism, the model proposed in this study can provide efficient and accurate shelter location services. Moreover, the customizability of this model provides meaningful reference value for other public facility location problems.
引用
收藏
页码:2722 / 2741
页数:20
相关论文
共 50 条
  • [21] EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization
    Chen, SenPeng
    Wu, Jia
    Liu, XiYuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [22] Allocation of English Distance Teaching Resources based on Deep Reinforcement Learning and Multi-Objective Optimization
    Cheng, Li
    Wang, Yangzi
    Hu, Bin
    Maia, Darchia
    Mathematical Problems in Engineering, 2022, 2022
  • [23] Deep reinforcement learning for multi-objective optimization in BIM-based green building design
    Pan, Yue
    Shen, Yuxuan
    Qin, Jianjun
    Zhang, Limao
    AUTOMATION IN CONSTRUCTION, 2024, 166
  • [24] Allocation of English Distance Teaching Resources based on Deep Reinforcement Learning and Multi-Objective Optimization
    Cheng, Li
    Wang, Yangzi
    Hu, Bin
    Maia, Darchia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [25] Investigating the multi-objective optimization of quality and efficiency using deep reinforcement learning
    Wang, Zhenhui
    Lu, Juan
    Chen, Chaoyi
    Ma, Junyan
    Liao, Xiaoping
    APPLIED INTELLIGENCE, 2022, 52 (11) : 12873 - 12887
  • [26] Investigating the multi-objective optimization of quality and efficiency using deep reinforcement learning
    Zhenhui Wang
    Juan Lu
    Chaoyi Chen
    Junyan Ma
    Xiaoping Liao
    Applied Intelligence, 2022, 52 : 12873 - 12887
  • [27] Multi-Objective Interval Optimization Dispatch of Microgrid via Deep Reinforcement Learning
    Mu, Chaoxu
    Shi, Yakun
    Xu, Na
    Wang, Xinying
    Tang, Zhuo
    Jia, Hongjie
    Geng, Hua
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (03) : 2957 - 2970
  • [28] Deep Reinforcement Learning based Multi-Objective Systems for Financial Trading
    Bisht, Kiran
    Kumar, Arun
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020), 2020,
  • [29] Multi-Objective Optimization of Cascade Blade Profile Based on Reinforcement Learning
    Qin, Sheng
    Wang, Shuyue
    Wang, Liyue
    Wang, Cong
    Sun, Gang
    Zhong, Yongjian
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 27
  • [30] Urban Driving with Multi-Objective Deep Reinforcement Learning
    Li, Changjian
    Czarnecki, Krzysztof
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 359 - 367