Research on the Mechanism of Evolution of Mechanical Anisotropy during the Progressive Failure of Oil Shale under Real-Time High-Temperature Conditions

被引:1
|
作者
Yang, Shaoqiang [1 ,2 ]
Zhang, Qinglun [1 ]
Yang, Dong [3 ]
Wang, Lei [3 ]
机构
[1] Taiyuan Univ Sci & Technol, Coll Engn Safety & Emergency Management, Taiyuan 030024, Peoples R China
[2] Intelligent Monitoring & Control Coal Mine Dust Ke, Taiyuan 030024, Peoples R China
[3] Taiyuan Univ Technol, Minist Educ, Key Lab In Situ Property Improving Min, Taiyuan 030024, Peoples R China
关键词
real-time high temperature; oil shale; uniaxial compression; fracture propagation; PORE STRUCTURE; PYROLYSIS; FRACTURE; TRANSFORMATION; BEHAVIOR; ROCK;
D O I
10.3390/en17164004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Real-time high-temperature CT scanning and a rock-mechanics test system were employed to investigate the mechanical properties of oil shale at temperatures from 20 to 600 degrees C. The results reveal that up to 400 degrees C, the aperture of fractures initially decreases and then increases when loading is perpendicular to the bedding. However, the number and aperture continuously increase when loading is parallel to the bedding. Beyond 400 degrees C, the number of pores increases and the aperture of the fractures becomes larger with rising temperature. The changes in microstructures significantly impact the mechanical properties. Between 20 and 600 degrees C, the compressive strength, elastic modulus, and Poisson's ratio initially decrease and then increase under perpendicular and parallel bedding loadings. The compressive strength and elastic modulus reach minimum values at 400 degrees C. However, for Poisson's ratio, the minimum occurs at 500 degrees C and 200 degrees C under perpendicular and parallel bedding loadings, respectively. Simultaneously, while the crack damage stress during perpendicular bedding loading, sigma cd-per, initially exhibits an upward trend followed by a decline and subsequently increases again with temperature increasing, the initial stress during perpendicular bedding loading, sigma ci-per, parallel bedding loading, sigma ci-par, and damage stress, sigma cd-par, decrease initially and then increase, reaching minimum values at 400 degrees C. These research findings provide essential data for reservoir reconstruction and cementing technology in the in situ mining of oil shale.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Research on the Impact Mechanical Properties of Real-Time High-Temperature Granite and a Coupled Thermal-Mechanical Constitutive Model
    Li, Yubai
    Zhai, Yue
    Xie, Yifan
    Meng, Fandong
    MATERIALS, 2023, 16 (07)
  • [22] Study on the Meso-Failure Mechanism of Granite under Real-Time High Temperature by Numerical Simulation
    Li, Kangwen
    Zhang, Fan
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [23] Effect of Cyclic Loading on Mode I Fracture Toughness of Granite under Real-Time High-Temperature Conditions
    Lv, Fei
    Zhang, Fan
    Zhang, Subiao
    Li, Kangwen
    Ma, Shuangze
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [25] Real-time permeability evolution of limestone under high temperature and triaxial stresses
    Chen, Zhengnan
    Feng, Zijun
    Mi, Chen
    Zhang, Chao
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2023, 9 (01)
  • [26] Real-time permeability evolution of limestone under high temperature and triaxial stresses
    Zhengnan Chen
    Zijun Feng
    Chen Mi
    Chao Zhang
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9
  • [27] Thermal fracture behavior and strength evolution of oil shale under high-temperature steam treatment: A dual-stage analysis of mechanical response
    Jia, Yichao
    Wu, Fan
    Yang, Dong
    Huang, Xudong
    ENGINEERING FRACTURE MECHANICS, 2025, 318
  • [28] HIGH-TEMPERATURE PHYSICAL EFFECTS UNDERLYING THE FAILURE MECHANISM IN THYRISTORS UNDER SURGE CONDITIONS.
    Silard, Andrei P.
    IEEE Transactions on Electron Devices, 1984, ED-31 (09) : 1334 - 1340
  • [29] Real-Time Temperature Measurement Research on High-Temperature Gas of Large-Scale Power Plant
    Wang, Zhiwei
    Li, Hongrui
    Wang, Yifeng
    Du, Baohua
    Wang, Dapeng
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 147 - 155
  • [30] Mechanical properties of granite under impact compression after real-time high temperature
    Huang Y.
    Qu L.
    Li Y.
    Zhai Y.
    Xie Y.
    Baozha Yu Chongji/Explosion and Shock Waves, 2023, 43 (02):