Characterizations and Clique Coloring of Edge Intersection Graphs on a Triangular Grid

被引:0
|
作者
de Luca, Vitor Tocci Ferreira [1 ]
Mazzoleni, Maria Pia [2 ]
Oliveira, Fabiano de Souza [1 ]
Szwarcfiter, Jayme Luiz [1 ,3 ]
机构
[1] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil
[2] Univ Nacl La Plata, La Plata, Argentina
[3] Univ Fed Rio de Janeiro, Rio de Janeiro, Brazil
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
关键词
Triangular grid; Intersection graphs; Paths on a grid; Single Bend Paths; Clique Coloring; SINGLE BEND PATHS;
D O I
10.1007/s13226-024-00698-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of intersection graphs, the edge intersection graphs of paths on a triangular grid, called EPGt graphs. We show similarities and differences from this new class to the well-known class of EPG graphs. A turn of a path at a grid point is called a bend. An EPGt representation in which every path has at most k bends is called a Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_k$$\end{document}-EPGt representation and the corresponding graphs are called Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_k$$\end{document}-EPGt graphs. We provide examples of B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{2}}$$\end{document}-EPG graphs that are B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt. We characterize the representation of cliques with three vertices and chordless 4-cycles in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt representations. We also prove that B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt graphs have Strong Helly number 3. Furthermore, we prove that B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt graphs are 7-clique colorable.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] EDGE-CLIQUE GRAPHS
    CHARTRAND, G
    KAPOOR, SF
    MCKEE, TA
    SABA, F
    GRAPHS AND COMBINATORICS, 1991, 7 (03) : 253 - 264
  • [22] A characterization of edge clique graphs
    Cerioli, MR
    Szwarcfiter, JL
    ARS COMBINATORIA, 2001, 60 : 287 - 292
  • [23] Edge clique coverings of graphs
    Badekha, I. A.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 19 (01): : 69 - 83
  • [24] ON GRID INTERSECTION GRAPHS
    HARTMAN, IBA
    NEWMAN, I
    ZIV, R
    DISCRETE MATHEMATICS, 1991, 87 (01) : 41 - 52
  • [25] On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid
    Alcon, Liliana
    Bonomo, Flavia
    Duran, Guillermo
    Gutierrez, Marisa
    Mazzoleni, Maria Pia
    Ries, Bernard
    Valencia-Pabon, Mario
    DISCRETE APPLIED MATHEMATICS, 2018, 234 : 12 - 21
  • [26] The clique problem in intersection graphs of ellipses and triangles
    Ambühl, C
    Wagner, U
    THEORY OF COMPUTING SYSTEMS, 2005, 38 (03) : 279 - 292
  • [27] The Clique Problem in Intersection Graphs of Ellipses and Triangles
    Christoph Ambühl
    Uli Wagner
    Theory of Computing Systems, 2005, 38 : 279 - 292
  • [28] The clique-perfectness and clique-coloring of outer-planar graphs
    Zuosong Liang
    Erfang Shan
    Liying Kang
    Journal of Combinatorial Optimization, 2019, 38 : 794 - 807
  • [29] The clique-perfectness and clique-coloring of outer-planar graphs
    Liang, Zuosong
    Shan, Erfang
    Kang, Liying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 794 - 807
  • [30] On self-clique graphs with triangular cliques
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    DISCRETE MATHEMATICS, 2016, 339 (02) : 457 - 459