Characterizations and Clique Coloring of Edge Intersection Graphs on a Triangular Grid

被引:0
|
作者
de Luca, Vitor Tocci Ferreira [1 ]
Mazzoleni, Maria Pia [2 ]
Oliveira, Fabiano de Souza [1 ]
Szwarcfiter, Jayme Luiz [1 ,3 ]
机构
[1] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil
[2] Univ Nacl La Plata, La Plata, Argentina
[3] Univ Fed Rio de Janeiro, Rio de Janeiro, Brazil
来源
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS | 2024年
关键词
Triangular grid; Intersection graphs; Paths on a grid; Single Bend Paths; Clique Coloring; SINGLE BEND PATHS;
D O I
10.1007/s13226-024-00698-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new class of intersection graphs, the edge intersection graphs of paths on a triangular grid, called EPGt graphs. We show similarities and differences from this new class to the well-known class of EPG graphs. A turn of a path at a grid point is called a bend. An EPGt representation in which every path has at most k bends is called a Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_k$$\end{document}-EPGt representation and the corresponding graphs are called Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_k$$\end{document}-EPGt graphs. We provide examples of B2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{2}}$$\end{document}-EPG graphs that are B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt. We characterize the representation of cliques with three vertices and chordless 4-cycles in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt representations. We also prove that B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt graphs have Strong Helly number 3. Furthermore, we prove that B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {B}_{{1}}$$\end{document}-EPGt graphs are 7-clique colorable.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs
    Bhyravarapu, Sriram
    Hartmann, Tim A.
    Kalyanasundaram, Subrahmanyam
    Reddy, I. Vinod
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 92 - 106
  • [2] Characterizations of cographs as intersection graphs of paths on a grid
    Cohen, Elad
    Golumbic, Martin Charles
    Ries, Bernard
    DISCRETE APPLIED MATHEMATICS, 2014, 178 : 46 - 57
  • [3] Conflict-Free Coloring: Graphs of Bounded Clique-Width and Intersection Graphs
    Bhyravarapu, Sriram
    Hartmann, Tim A.
    Hoang, Hung P.
    Kalyanasundaram, Subrahmanyam
    Reddy, I. Vinod
    ALGORITHMICA, 2024, 86 (07) : 2250 - 2288
  • [4] Intersection graphs and the clique operator
    Gutierrez, M
    GRAPHS AND COMBINATORICS, 2001, 17 (02) : 237 - 244
  • [5] Intersection Graphs and the Clique Operator
    Marisa Gutierrez
    Graphs and Combinatorics, 2001, 17 : 237 - 244
  • [6] Some new characterizations of Hamiltonian cycles in triangular grid graphs
    Bodroza-Pantic, Olga
    Kwong, Harris
    Pantic, Milan
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 1 - 13
  • [7] Clique coloring of binomial random graphs
    McDiarmid, Colin
    Mitsche, Dieter
    Pralat, Pawel
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (04) : 589 - 614
  • [8] Clique coloring of dense random graphs
    Alon, Noga
    Krivelevich, Michael
    JOURNAL OF GRAPH THEORY, 2018, 88 (03) : 428 - 433
  • [9] CLIQUE COVERS AND COLORING PROBLEMS OF GRAPHS
    KLOTZ, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (03) : 338 - 345
  • [10] Edge Intersection Graphs of Single Bend Paths on a Grid
    Golumbic, Martin Charles
    Lipshteyn, Marina
    Stern, Michal
    NETWORKS, 2009, 54 (03) : 130 - 138