The widespread use of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a weedkiller has resulted in its persistence in the environment, leading to surface and groundwater pollution. In this study, the fixed bed column experiments were performed to remove 2,4-D from aqueous solutions using magnetic activated carbon derived from Peltophorum pterocarpum tree pods. The evaluation was done on effects of operating parameters such as bed depth (2-4 cm), influent flow rate (4.6-11.4 mL/min), and 2,4-D concentration (25-100 mg/L) on the breakthrough curves. The data fit well with the Yoon-Nelson and Thomas models, exhibiting high R2 values. Results indicated that lower flow rates, lower 2,4-D concentrations, and greater bed depths enhanced adsorption capacity, achieving up to 196.31 mg/g. Reusability studies demonstrated the material's potential for repeated use, while toxicity studies with Vigna radiata seeds confirmed the effectiveness of Fe3O4-CPAC in removing 2,4-D. This investigation highlights the promising application of Fe3O4-CPAC in fixed bed adsorption systems for efficient 2,4-D removal.