ern: An R package to estimate the effective reproduction number using clinical and wastewater surveillance data

被引:1
|
作者
Champredon, David [1 ]
Papst, Irena [1 ]
Yusuf, Warsame [1 ]
机构
[1] Publ Hlth Agcy Canada, Publ Hlth Risk Sci Div, Natl Microbiol Lab, Guelph, ON, Canada
来源
PLOS ONE | 2024年 / 19卷 / 06期
关键词
MODEL;
D O I
10.1371/journal.pone.0305550
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The effective reproduction number, R-t, is an important epidemiological metric used to assess the state of an epidemic, as well as the effectiveness of public health interventions undertaken in response. When R-t is above one, it indicates that new infections are increasing, and thus the epidemic is growing, while an R-t is below one indicates that new infections are decreasing, and so the epidemic is under control. There are several established software packages that are readily available to statistically estimate R-t using clinical surveillance data. However, there are comparatively few accessible tools for estimating R-t from pathogen wastewater concentration, a surveillance data stream that cemented its utility during the COVID-19 pandemic. We present the R package ern that aims to perform the estimation of the effective reproduction number from real-world wastewater or aggregated clinical surveillance data in a user-friendly way.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Learning from Data Using the R Package "frbs"
    Septem Riza, Lala
    Bergmeir, Christoph
    Herrera, Francisco
    Manuel Benitez, Jose
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2149 - 2155
  • [32] dGAselID: An R Package for Selecting a Variable Number of Features in High Dimensional Data
    Melita, Nicolae Teodor
    Holban, Stefan
    R JOURNAL, 2017, 9 (02): : 18 - 34
  • [33] Estimating the measles effective reproduction number in Australia from routine notification data
    Chiew, May
    Gidding, Heather F.
    Dey, Aditi
    Wood, James
    Martin, Nicolee
    Davis, Stephanie
    McIntyre, Peter
    BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2014, 92 (03) : 171 - 177
  • [34] Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance
    Meyer, Sebastian
    Held, Leonhard
    Hohle, Michael
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (11):
  • [35] MobilityTransformR: an R package for effective mobility transformation of CE-MS data
    Salzer, Liesa
    Witting, Michael
    Schmitt-Kopplin, Philippe
    BIOINFORMATICS, 2022, 38 (16) : 4044 - 4045
  • [36] Using Data Fusion to Estimate Cyanobacteria Number in Dobczyckie Lake
    Dziadak, Bogdan
    Kalicki, Andrzej
    Makowski, Lukasz
    Michalski, Andrzej
    Staroszczyk, Zbigniew
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (9A): : 87 - 90
  • [37] Comparison of methods to Estimate Basic Reproduction Number (R0) of influenza, Using Canada 2009 and 2017-18 A (H1N1) Data
    Nikbakht, Roya
    Baneshi, Mohammad Reza
    Bahrampour, Abbas
    Hosseinnataj, Abolfazl
    JOURNAL OF RESEARCH IN MEDICAL SCIENCES, 2019, 24
  • [38] Using Surveillance Data to Estimate Infectious Disease Burden: Opportunities and Challenges
    Hochheiser, Harry
    Kumar, Praveen
    AMERICAN JOURNAL OF PUBLIC HEALTH, 2025, 115 (04) : 454 - 456
  • [39] TURF analysis for CATA data using R package ?turfR ?
    Kuesten, Carla
    Bi, Jian
    FOOD QUALITY AND PREFERENCE, 2021, 91
  • [40] The mosaic Package: Helping Students to 'Think with Data' Using R
    Pruim, Randall
    Kaplan, Daniel T.
    Horton, Nicholas J.
    R JOURNAL, 2017, 9 (01): : 77 - 102