TPTNet: A Data-Driven Temperature Prediction Model Based on Turbulent Potential Temperature

被引:0
|
作者
Park, Jun [1 ]
Lee, Changhoon [1 ,2 ]
机构
[1] Yonsei Univ, Sch Math & Comp, Seoul, South Korea
[2] Yonsei Univ, Sch Mech Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
data-driven learning; weather station data; convolutional neural network; graph neural network;
D O I
10.1029/2024EA003523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A data-driven model for predicting the surface temperature using neural networks was proposed to alleviate the computational burden of numerical weather prediction (NWP). Our model, named TPTNet uses only 2 m temperature measured at the weather stations of the South Korean Peninsula as input to predict the local temperature at finite forecast hours. The turbulent fluctuation component of the temperature was extracted from the station measurements by separating the climatology component accounting for the yearly and daily variations. The effect of station altitude was then compensated by introducing a potential temperature. The resulting turbulent potential temperature (TPT) data at irregularly distributed stations were used as input for predicting the TPT at forecast hours through three trained networks based on convolutional neural network, Swin Transformer, and a graph neural network. By comparing the prediction performance of our network with that of persistence and NWP, we found that our model can make predictions comparable to NWP for up to 12 hr. We developed a new model called TPTNet to predict local temperatures using only temperature measurements from weather stations in South Korea. This model aims to reduce the heavy computational demands of traditional numerical weather prediction (NWP) methods. By analyzing 20 years of data, we separated the regular temperature patterns that change yearly and daily from the more unpredictable fluctuations. We also adjusted the model for the altitude of each weather station. We trained three different types of neural networks for this purpose: a convolutional neural network, a Swin Transformer, and a graph neural network. When we tested our model with new data from 2020, it made reliable temperature predictions for up to 12 hr, performing as well as, or even better than, traditional NWP methods. This new approach could help improve weather forecasting by making it faster and less computationally intensive. Only 2 m temperature data measured at the weather station is used as input for the prediction of temperature at finite forecast hours Turbulent fluctuation temperature relative to the climatological yearly and daily periodic variations with the altitude adjustment using potential temperature is considered in data-driven learning For 12 hr of forecast hour, TPTNet produces forecasts comparable to those of the numerical weather prediction, with the less scattered errors over stations
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Improved Data-Driven Building Daily Energy Consumption Prediction Models Based on Balance Point Temperature
    Yang, Hao
    Ran, Maoyu
    Feng, Haibo
    BUILDINGS, 2023, 13 (06)
  • [32] Data-driven Temperature Control of Internal Mixers
    Zhou, Zhihao
    Chi, Ronghu
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1245 - 1250
  • [33] Data-Driven Prediction Model for Analysis of Sensor Data
    Yotov, Ognyan
    Aleksieva-Petrova, Adelina
    ELECTRONICS, 2024, 13 (10)
  • [34] A Data-Driven Model For Wildfire Prediction in California
    Hahs, Brennon
    Sood, Kanika
    Gomez, Desiree
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [35] A Data-Driven Model for Rapid CII Prediction
    Muehmer, Markus
    La Ferlita, Alessandro
    Geber, Evangelos
    Ehlers, Soeren
    Di Nardo, Emanuel
    El Moctar, Ould
    Ciaramella, Angelo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [36] A data-driven fuzzy model for prediction of rockburst
    Rastegarmanesh, Ashkan
    Moosavi, Mahdi
    Kalhor, Ahmad
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2021, 15 (02) : 152 - 164
  • [37] DATA-DRIVEN MODELS FOR CANOPY TEMPERATURE-BASED IRRIGATION SCHEDULING
    King, B. A.
    Shellie, K. C.
    Tarkalson, D. D.
    Levin, A. D.
    Sharma, V
    Bjorneberg, D. L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (05) : 1579 - 1592
  • [38] A Data-Driven Model for Software Reliability Prediction
    Lo, Jung-Hua
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 326 - 331
  • [39] A data-driven model for history matching and prediction
    1600, Society of Petroleum Engineers (SPE) (68):
  • [40] Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model
    Zhang, Kai
    Chu, Zixuan
    Xing, Jiping
    Zhang, Honggang
    Cheng, Qixiu
    MATHEMATICS, 2023, 11 (19)