A multi-omics data analysis workflow packaged as a FAIR Digital Object

被引:2
|
作者
Niehues, Anna [1 ,2 ,9 ]
de Visser, Casper [1 ]
Hagenbeek, Fiona A. [3 ,4 ,10 ]
Kulkarni, Purva [1 ,2 ,5 ]
Pool, Rene [3 ,4 ]
Karu, Naama [6 ]
Kindt, Alida S. D. [6 ]
Singh, Gurnoor [1 ]
Vermeiren, Robert R. J. M. [7 ]
Boomsma, Dorret, I [3 ,4 ,8 ]
van Dongen, Jenny [3 ,4 ,8 ]
't Hoen, Peter A. C. [1 ]
van Gool, Alain J. [2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Med BioSci, NL-6525 GA Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Dept Lab Med, Translat Metab Lab, NL-6525 GA Nijmegen, Netherlands
[3] Vrije Univ Amsterdam, Dept Biol Psychol, NL-1081 BT Amsterdam, Netherlands
[4] Amsterdam Publ Hlth Res Inst, NL-1081 BT Amsterdam, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 GA Nijmegen, Netherlands
[6] Leiden Univ, Metabol & Analyt Ctr, Leiden Acad Ctr Drug Res, NL-2333 AL Leiden, Netherlands
[7] Leiden Univ, Med Ctr, Dept Child & Adolescent Psychiat, LUMC Curium, NL-2342 AK Oegstgeest, Netherlands
[8] Amsterdam Reprod & Dev AR&D Res Inst, NL-1081 BT Amsterdam, Netherlands
[9] Leiden Univ, Med Ctr, Leiden, Netherlands
[10] TIMACS, Hobart, TAS, Australia
来源
GIGASCIENCE | 2024年 / 13卷
关键词
multi-omics; workflow; metadata; FAIR; RO-Crate; FDO;
D O I
10.1093/gigascience/giad115
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Applying good data management and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles in research projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based on the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIR Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object.Findings We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing behavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containers with software dependencies. We adhered to software development practices like version control, documentation, and licensing. Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via WorkflowHub.Conclusions Along with the packaged multi-omics data analysis workflow, we share our experiences adopting various FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics data analysis workflows to turn FAIR principles into practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] An automated workflow for multi-omics screening of microbial model organisms
    Donati, Stefano
    Mattanovich, Matthias
    Hjort, Pernille
    Jacobsen, Simo Abdessamad Baallal
    Blomquist, Sarah Dina
    Mangaard, Drude
    Gurdo, Nicolas
    Pastor, Felix Pacheco
    Maury, Jerome
    Hanke, Rene
    Herrgard, Markus J.
    Wulff, Tune
    Jakociunas, Tadas
    Nielsen, Lars Keld
    McCloskey, Douglas
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2023, 9 (01)
  • [22] An automated workflow for multi-omics screening of microbial model organisms
    Stefano Donati
    Matthias Mattanovich
    Pernille Hjort
    Simo Abdessamad Baallal Jacobsen
    Sarah Dina Blomquist
    Drude Mangaard
    Nicolas Gurdo
    Felix Pacheco Pastor
    Jérôme Maury
    Rene Hanke
    Markus J. Herrgård
    Tune Wulff
    Tadas Jakočiūnas
    Lars Keld Nielsen
    Douglas McCloskey
    npj Systems Biology and Applications, 9
  • [23] Dimension reduction techniques for the integrative analysis of multi-omics data
    Meng, Chen
    Zeleznik, Oana A.
    Thallinger, Gerhard G.
    Kuster, Bernhard
    Gholami, Amin M.
    Culhane, Aedin C.
    BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) : 628 - 641
  • [24] Correction: Integrative analysis of multi-omics data for liquid biopsy
    Geng Chen
    Jing Zhang
    Qiaoting Fu
    Valerie Taly
    Fei Tan
    British Journal of Cancer, 2023, 128 : 702 - 702
  • [25] Evaluation of integrative clustering methods for the analysis of multi-omics data
    Chauvel, Cecile
    Novoloaca, Alexei
    Veyre, Pierre
    Reynier, Frederic
    Becker, Jeremie
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (02) : 541 - 552
  • [26] Computational Analysis of Phosphoproteomics Data in Multi-Omics Cancer Studies
    Mantini, Giulia
    Pham, Thang, V
    Piersma, Sander R.
    Jimenez, Connie R.
    PROTEOMICS, 2021, 21 (3-4)
  • [27] Comparative analysis of integrative classification methods for multi-omics data
    Novoloaca, Alexei
    Broc, Camilo
    Beloeil, Laurent
    Yu, Wen-Han
    Becker, Jeremie
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [28] Integration strategies of multi-omics data for machine learning analysis
    Picard M.
    Scott-Boyer M.-P.
    Bodein A.
    Périn O.
    Droit A.
    Computational and Structural Biotechnology Journal, 2021, 19 : 3735 - 3746
  • [29] Sliced inverse regression for integrative multi-omics data analysis
    Jain, Yashita
    Ding, Shanshan
    Qiu, Jing
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2019, 18 (01)
  • [30] MODMatcher: Multi-Omics Data Matcher for Integrative Genomic Analysis
    Yoo, Seungyeul
    Huang, Tao
    Campbell, Joshua D.
    Lee, Eunjee
    Tu, Zhidong
    Geraci, Mark W.
    Powell, Charles A.
    Schadt, Eric E.
    Spira, Avrum
    Zhu, Jun
    PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)