Study of the Dynamic Splitting Tensile Mechanical Properties and Damage Evolution of Steel Fiber-Reinforced Recycled-Aggregate Concrete Based on Acoustic Emission Technology

被引:0
|
作者
Zhang, Hua [1 ]
Ren, Yun Hao [1 ]
Ji, Shan Shan [1 ]
Liu, Xin Yue [1 ]
Li, Xue Chen [1 ]
Zheng, Si Zhe [1 ]
Cao, Zhen Xing [1 ]
机构
[1] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Jiangsu, Peoples R China
关键词
Acoustic emission (AE) technology; Brazilian disc splitting test; Damage evolution; Dynamic splitting tensile mechanical properties; Steel fiber-reinforced recycled-aggregate concrete; STRENGTH; SLAG;
D O I
10.1061/JMCEE7.MTENG-17837
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Aiming at effectively utilizing recycled coarse aggregate (RCA) in sustainable construction, it is necessary to study the internal damage evolution of steel fiber-reinforced recycled-aggregate concrete (SFRAC) under dynamic tensile loads and the reinforced mechanism of steel fiber. The influences of the steel fiber content, the recycled-aggregate replacement ratio, and the loading rate on the mechanical properties and dynamic damage of SFRAC were studied using the Brazilian disc splitting test and acoustic emission (AE) technology. Then, the mechanism of crack evolution was investigated by means of the parameter analysis method. The results indicate that the existence of RCA makes the mechanical properties of recycled-aggregate concrete worse than those of normal concrete and weakens the strain rate effect of splitting tensile strength, whereas this negative influence can effectively be improved by steel fiber. The preferable steel fiber contents obtained from the splitting tensile strength and peak displacement are 1.0% and 1.5%, and under these conditions, the SFRAC replaced by 30% RCA has a mechanical performance superior to that of normal concrete. It is also found that the damage degree and energy absorbing capacity of SFRAC can be identified by analyzing the ring and energy counts of the AE signal. Furthermore, the evolution of the crack pattern of SFRAC under dynamic axial tensile load is well reflected by the rise angle and average frequency. Increased steel fiber content and recycled-aggregate replacement ratio can change the failure mode to a complex tensile-shear mixed failure, and the shear crack gradually becomes the main crack with increasing loading rates. The public environment crisis from the greenhouse effect led to a series of measures from all industries worldwide. The widespread use of concrete has brought with it serious environmental and energy-saving problems. The construction industry preliminarily attempts to replace natural aggregate by recycled aggregate obtained by crushing construction solid waste in green low-carbon buildings, which shows considerable carbon sequestration and emission reduction. However, recycled aggregate has poor mechanical properties such as low strength and high porosity. When participating in concrete configuration, this defect seriously affects the strength of the material and limits its wide application in construction engineering. For a component with strength requirements or special purposes, fiber can be adopted to improve the mechanical properties of recycled-aggregate concrete. This study examines the damage process of fiber-reinforced recycled-aggregate concrete with the microscopic method and proposes a satisfactory mix proportion. Naturally, these analysis methods require more time and effort than a basic macroscopic analysis. Moreover, proper research on the mechanism of damage evolution under dynamic loading is crucial.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Damage Characteristics of Steel Fiber-reinforced Concrete Based on Direct Tensile Test
    Zhang D.-M.
    Zhang X.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2023, 36 (04): : 146 - 156
  • [22] Damage Evolution Characteristics of Steel-Fiber-Reinforced Cellular Concrete Based on Acoustic Emission
    Huang, Hu
    Chen, Feihao
    Cao, Kelei
    Zhang, Xiancai
    Li, Ruihang
    BUILDINGS, 2025, 15 (02)
  • [23] A Study of Acoustic Emission Based RA-AF Characteristics of Polypropylene Fiber-Reinforced Recycled Aggregate Concrete Under Uniaxial Compression
    Zhou, Daowen
    Yang, Xin
    Tang, Yu
    Miao, Yutao
    ARCHIVES OF ACOUSTICS, 2024, 49 (04) : 601 - 612
  • [24] Experimental study on dynamic properties of flax fiber reinforced recycled aggregate concrete
    Yan, Zhi-Wei
    Bai, Yu-Lei
    Zhang, Qiang
    Zeng, Jun-Jie
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [25] Study on the mechanical properties and microstructure of fiber reinforced metakaolin-based recycled aggregate concrete
    Liu, Kangning
    Wang, Sheliang
    Quan, Xiaoyi
    Duan, Wei
    Nan, Zhao
    Wei, Tao
    Xu, Fan
    Li, Binbin
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 294
  • [26] Mechanical behavior of steel fiber reinforced recycled aggregate concrete under dynamic triaxial compression
    Li, Ping
    Liu, Zhenzhen
    Lu, Yiyan
    Lin, Chenlong
    Ma, Wentao
    COMPOSITE STRUCTURES, 2023, 320
  • [27] Mechanical properties and meso-microscopic mechanism of basalt fiber-reinforced recycled aggregate concrete
    Zheng, Yuanxun
    Zhuo, Jingbo
    Zhang, Peng
    Ma, Mei
    JOURNAL OF CLEANER PRODUCTION, 2022, 370
  • [28] Experimental study on mechanical behavior of steel fiber reinforced geopolymeric recycled aggregate concrete
    Zhao, Qiuhong
    Wang, Youqun
    Xie, Meng
    Huang, Baoshan
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 356
  • [29] Effect of metakaolin on the mechanical properties and pore characteristics of fiber-reinforced tailing recycled aggregate concrete
    Xu, Fan
    Wang, Sheliang
    Li, Tao
    Li, Zhijun
    STRUCTURES, 2022, 35 : 15 - 25
  • [30] Uniaxial tensile properties of steel fiber-reinforced recycled coarse aggregate shotcrete: Test and constitutive relationship
    Zhang, Xuanhao
    Ma, Chong
    Liu, Can
    Zhang, Ke
    Lu, Jun
    Liu, Chuanqi
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411