Migrating Software Systems Toward Post-Quantum Cryptography-A Systematic Literature Review

被引:0
|
作者
Naether, Christian [1 ]
Herzinger, Daniel [2 ]
Gazdag, Stefan-Lukas [2 ]
Steghoefer, Jan-Philipp [1 ]
Daum, Simon [2 ]
Loebenberger, Daniel [3 ]
机构
[1] XITASO Gmbh, D-86153 Augsburg, Germany
[2] genua GmbH, D-85551 Kirchheim, Germany
[3] Fraunhofer AISEC, D-85748 Garching, Germany
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Data mining; Cryptography; Planning; Surveys; Software systems; Quantum computing; Protocols; Migration; post-quantum cryptography; quantum-safe; transition;
D O I
10.1109/ACCESS.2024.3450306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Networks such as the Internet are essential for our connected world. Quantum computing threatens its fundamental security mechanisms. Therefore, a migration to post-quantum-cryptography (PQC) is necessary for networks and their components. Currently, there is little knowledge on how such migrations should be structured and implemented in practice. Our systematic literature review addresses migration approaches for IP networks towards PQC. It surveys papers about the migration process and exemplary real-world software system migrations. On the process side, we found that terminology, migration steps, and roles are not defined precisely or consistently across the literature. Still, we identified four major phases and appropriate substeps which we matched with also emerging archetypes of roles. In terms of real-world migrations, we see that reports used several different PQC implementations and hybrid solutions for migrations of systems belonging to a wide range of system types. Across all papers we noticed three major challenges for adopters: missing experience of PQC and a high realization effort, concerns about the security of the upcoming system, and finally, high complexity. Our findings indicate that recent standardization efforts already push quantum-safe networking forward. However, the literature is still not in consensus about definitions and best practices. Implementations are mostly experimental and not necessarily practical, leading to an overall chaotic situation. To better grasp this fast moving field of (applied) research, our systematic literature review provides a comprehensive overview of its current state and serves as a starting point for delving into the matter of PQC migration.
引用
收藏
页码:132107 / 132126
页数:20
相关论文
共 50 条
  • [41] Evaluation of Post-Quantum Distributed Ledger Cryptography
    Campbell, Robert E., Sr.
    JOURNAL OF THE BRITISH BLOCKCHAIN ASSOCIATION, 2019, 2 (01): : 17 - 24
  • [42] A Performance Evaluation of IPsec with Post-Quantum Cryptography
    Bae, Seungyeon
    Chang, Yousung
    Park, Hyeongjin
    Kim, Minseo
    Shin, Youngjoo
    INFORMATION SECURITY AND CRYPTOLOGY - ICISC 2022, 2023, 13849 : 249 - 266
  • [43] Homomorphic Encryption Based on Post-Quantum Cryptography
    Chen, Abel C. H.
    2023 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLIED NETWORK TECHNOLOGIES, ICMLANT, 2023, : 56 - 60
  • [44] Designing and Delivering a Post-Quantum Cryptography Course
    Borrelli, Thomas J.
    Polak, Monika
    Radziszowski, Stanislaw
    PROCEEDINGS OF THE 55TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE 2024, VOL. 1, 2024, : 137 - 143
  • [45] TPM-Based Post-Quantum Cryptography
    Paul, Sebastian
    Schick, Felix
    Seedorf, Jan
    ARES 2021: 16TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY, 2021,
  • [46] Faster Isogenies for Post-quantum Cryptography: SIKE
    Elkhatib, Rami
    Koziel, Brian
    Azarderakhsh, Reza
    TOPICS IN CRYPTOLOGY, CT-RSA 2022, 2022, 13161 : 49 - 72
  • [47] US outlines shift to post-quantum cryptography'
    Banks, Michael
    PHYSICS WORLD, 2022, 35 (06)
  • [48] Post-Quantum Cryptography on FPGAs: The Niederreiter Cryptosystem
    Wang, Wen
    Szefer, Jakub
    Niederhagen, Ruben
    PROCEEDINGS OF THE 2018 GREAT LAKES SYMPOSIUM ON VLSI (GLSVLSI'18), 2018, : 371 - 371
  • [49] On Feasibility of Post-Quantum Cryptography on Small Devices
    Malina, Lukas
    Popelova, Lucie
    Dzurenda, Petr
    Hajny, Jan
    Martinasek, Zdenek
    IFAC PAPERSONLINE, 2018, 51 (06): : 462 - 467
  • [50] LETTERS FOR POST-QUANTUM CRYPTOGRAPHY STANDARD EVALUATION
    Ding, Jintai
    Mesnager, Sihem
    Wang, Lih-Chung
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (01) : I - I