Turbidity assessment in coastal regions combining machine learning, numerical modeling, and remote sensing
被引:1
|
作者:
Memari, Saeed
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Memari, Saeed
[1
]
Phanikumar, Mantha S.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
MSU AgBioRes, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Phanikumar, Mantha S.
[1
,2
]
Boddeti, Vishnu
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Boddeti, Vishnu
[3
]
Das, Narendra
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USAMichigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
Das, Narendra
[1
,4
]
机构:
[1] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
[2] MSU AgBioRes, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Biosyst & Agr Engn, E Lansing, MI 48824 USA
Machine learning models for water quality prediction often face challenges due to insufficient data and uneven spatial-temporal distributions. To address these issues, we introduce a framework combining machine learning, numerical modeling, and remote sensing imagery to predict coastal water turbidity, a key water quality proxy. This approach was tested in the Great Lakes region, specifically Cleveland Harbor, Lake Erie. We trained models using observed and synthetic data from 3D numerical models and tested them against in situ and remote sensing data from PlanetLabs' Dove satellites. High-resolution (HR) data improved prediction accuracy, with RMSE values of 0.154 and 0.146 log10(FNU) and R2 values of 0.92 and 0.93 for validation and test datasets, respectively. Our study highlights the importance of unified turbidity measures for data comparability. The machine learning model demonstrated skill in predicting turbidity through transfer learning, indicating applicability in diverse, data-scarce regions. This approach can enhance decision support systems for coastal environments by providing accurate, timely predictions of water quality variables. Our methodology offers robust strategies for turbidity and water quality monitoring and holds significant potential for improving input data quality for numerical models and developing predictive models from remote sensing data.
机构:
Key Laboratory of Ministry of Land and Resources for Geoscience Spatial Information Technology, Chengdu
Chinese Academy of Meteorological Sciences, BeijingKey Laboratory of Ministry of Land and Resources for Geoscience Spatial Information Technology, Chengdu
Zhang J.
Fang S.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Academy of Meteorological Sciences, Beijing
Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, NanjingKey Laboratory of Ministry of Land and Resources for Geoscience Spatial Information Technology, Chengdu
Fang S.
Liu H.
论文数: 0引用数: 0
h-index: 0
机构:
Key Laboratory of Ministry of Land and Resources for Geoscience Spatial Information Technology, ChengduKey Laboratory of Ministry of Land and Resources for Geoscience Spatial Information Technology, Chengdu
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Zhu, Liudi
Cui, Tingwei
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Cui, Tingwei
Runa, A.
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519082, Peoples R China
Inner Mongolia Normal Univ, Coll Geog Sci, Hohhot 010022, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Runa, A.
Pan, Xinliang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Pan, Xinliang
Zhao, Wenjing
论文数: 0引用数: 0
h-index: 0
机构:
Minist Ecol & Environm, South China Inst Environm Sci, Guangzhou 510000, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Zhao, Wenjing
Xiang, Jinzhao
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519082, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Xiang, Jinzhao
Cao, Mengmeng
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Zhuhai 519082, Peoples R China
Inner Mongolia Normal Univ, Coll Geog Sci, Hohhot 010022, Peoples R ChinaSun Yat Sen Univ, Sch Atmospher Sci, Zhuhai 519082, Peoples R China
机构:
Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea
Incheon Natl Univ, Energy Excellence & Smart City Lab, Incheon 22012, South KoreaIncheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea