Drought monitoring over the Indian state of Tamil Nadu using multitudinous standardized precipitation evapotranspiration index

被引:1
|
作者
Janarth, S. [1 ]
Jagadeeswaran, R. [1 ]
Pazhanivelan, S. [2 ]
Kannan, Balaji [3 ]
Ragunath, K. P. [2 ]
Sathyamoorthy, N. K. [4 ]
机构
[1] Tamil Nadu Agr Univ, Dept Remote Sensing & GIS, Coimbatore 641003, Tamil Nadu, India
[2] Tamil Nadu Agr Univ, Ctr Water & Geospatial Studies, Coimbatore 641003, Tamil Nadu, India
[3] Tamil Nadu Agr Univ, Dept Soil & Water Conservat Engn, Coimbatore 641003, Tamil Nadu, India
[4] Tamil Nadu Agr Univ, Agro Climate Res Ctr, Coimbatore 641003, Tamil Nadu, India
来源
PLANT SCIENCE TODAY | 2024年 / 11卷 / 04期
关键词
SPEI; SPI; agricultural drought; evapotranspiration; TRENDS;
D O I
10.14719/pst.4653
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Droughts significantly impact agriculture and water resources in Tamil Nadu, India, making precise monitoring essential for effective response and mitigation. Traditional drought indices, like the Standardized Precipitation Index (SPI), rely solely on precipitation data and may overlook other critical factors. The Standardized Precipitation Evapotranspiration Index (SPEI) addresses this by incorporating temperature and precipitation data, offering a more comprehensive assessment of drought conditions, especially under changing climate scenarios. This study utilized daily temperature and precipitation records from NASA's Prediction of Worldwide Energy Resources (POWER) project, covering 1991 to 2024. Potential evapotranspiration (PET) was calculated using the Thornthwaite method, and the water balance was derived by aggregating monthly precipitation and PET data, which was then fitted to a log-logistic probability distribution (1). SPEI values were standardized to create a drought severity index, validated through comparisons with SPI and the Enhanced Vegetation Index (EVI) from MODIS data. Temporal analysis revealed significant year-to-year variability in drought conditions, with 2021 experiencing the most severe drought. The extreme droughts of 2019, 2020 and 2021 highlighted the need for adaptive drought management strategies due to their substantial impacts on agriculture and water resources. Spatial analysis identified the north-western and southern regions of Tamil Nadu as more vulnerable to drought. Strong correlations between SPEI, SPI and EVI validated SPEI's effectiveness as a drought monitoring tool. The study emphasizes the importance of advanced indices like SPEI for precise drought monitoring and recommends integrating SPEI with real-time data and remote sensing technologies for improved drought prediction.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 50 条
  • [21] Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)
    Javad Bazrafshan
    Somayeh Hejabi
    Jaber Rahimi
    Water Resources Management, 2014, 28 : 1045 - 1060
  • [22] Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)
    Bazrafshan, Javad
    Hejabi, Somayeh
    Rahimi, Jaber
    WATER RESOURCES MANAGEMENT, 2014, 28 (04) : 1045 - 1060
  • [23] Drought assessment and monitoring in Jordan using the standardized precipitation index
    Abu Hajar, Husam A.
    Murad, Yasmin Z.
    Shatanawi, Khaldoun M.
    Al-Smadi, Bashar M.
    Abu Hajar, Yousef A.
    ARABIAN JOURNAL OF GEOSCIENCES, 2019, 12 (14)
  • [24] Monitoring Agricultural Drought Using the Standardized Effective Precipitation Index
    Ebrahimpour, Meisam
    Rahimi, Jaber
    Nikkhah, Armin
    Bazrafshan, Javad
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2015, 141 (01)
  • [25] Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh
    Md Giashuddin Miah
    Hasan Muhammad Abdullah
    Changyoon Jeong
    Environmental Monitoring and Assessment, 2017, 189
  • [26] Modified Standardized Precipitation Evapotranspiration Index: spatiotemporal analysis of drought
    Habeeb, Rimsha
    Almazah, Mohammed M. A.
    Hussain, Ijaz
    Al-Ansari, Nadhir
    Al-Rezami, A. Y.
    Sammen, Saad Sh.
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [27] Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh
    Miah, Md Giashuddin
    Abdullah, Hasan Muhammad
    Jeong, Changyoon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2017, 189 (11)
  • [28] MONITORING OF AGRICULTURAL DROUGHT USING FORTNIGHTLY VARIATION OF VEGETATION CONDITION INDEX (VCI) FOR THE STATE OF TAMIL NADU, INDIA
    Vaani, N.
    Porchelvan, P.
    INTERNATIONAL CONFERENCE ON GEOMATIC & GEOSPATIAL TECHNOLOGY (GGT 2018): GEOSPATIAL AND DISASTER RISK MANAGEMENT, 2018, 42-4 (W9): : 159 - 164
  • [29] Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring
    Begueria, Santiago
    Vicente-Serrano, Sergio M.
    Reig, Fergus
    Latorre, Borja
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2014, 34 (10) : 3001 - 3023
  • [30] Correction to: Evaluation of recent drought conditions by standardized precipitation index and potential evapotranspiration over Indonesia
    Y. Pramudya
    T. Onishi
    M. Senge
    K. Hiramatsu
    Prasetyo M. R. Nur
    Paddy and Water Environment, 2019, 17 : 339 - 339