Subfield codes of CD-codes over F2[x]/⟨x3 - x⟩

被引:0
|
作者
Bhagat, Anuj Kumar [1 ]
Sarma, Ritumoni [1 ]
Sagar, Vidya [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Linear code; Subfield code; Minimal code; Optimal code; Self-orthogonal code; Simplicial complex; LINEAR CODES; CYCLIC CODES;
D O I
10.1016/j.disc.2024.114223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A non-zero F-linear map from a finite-dimensional commutative F-algebra to the field Fis called an F-valued trace if its kernel does not contain any non-zero ideals. In this article, we utilize an F2-valued trace of the F2-algebra R2:= F2[x]/x3- x to study binary subfield code C(2) Dof CD:={(x center dot d) d.D: x. Rm2} for each defining set Dderived from a certain simplicial complex. For m. Nand X.{1, 2,..., m}, define X:={v. Fm2: Supp(v). X} and D :=(1 + u2) D1+ u2D2+(u + u2)D3, a subset of Rm2, where u = x + x3- x, D1.{L, cL}, D2.{ M, cM} and D3.{N, cN}, for L, M, N.{1, 2,..., m}. The parameters and the Hamming weight distribution of the binary subfield code C(2)Dof CDare determined for each D. These binary subfield codes are minimal under certain mild conditions on the cardinalities of L, Mand N. Moreover, most of these codes are distanceoptimal. Consequently, we obtain a few infinite families of minimal, self-orthogonal and distance-optimal binary linear codes that are either 2-weight or 4-weight. It is worth mentioning that we have obtained several new distance-optimal binary linear codes. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] MACDONALD CODES OVER THE RING F2
    Dertli, Rabia
    Eren, Senol
    JOURNAL OF SCIENCE AND ARTS, 2020, (02): : 283 - 290
  • [22] D[X2, X3] over an integral domain D
    Anderson, DF
    Chang, GW
    Park, J
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 1 - 14
  • [23] Quantum codes from cyclic codes over F2 + vF2
    Qian, Jianfa
    Journal of Information and Computational Science, 2013, 10 (06): : 1715 - 1722
  • [24] BEHAVIOR OF F2(N)(X)-F2(P)(X) NEAR X = 1 AND CHIRAL ALGEBRA
    BUCCELLA, F
    FALCIONI, M
    PUGLIESE, A
    LETTERE AL NUOVO CIMENTO, 1976, 17 (15): : 489 - 494
  • [25] The equation x1/x2 + x2/x3 + x3/x4 + x4/x1 = n
    Dofs, Erik
    Nguyen Xuan Tho
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (01) : 75 - 87
  • [26] The distance to a squarefree polynomial over F2[x]
    Filaseta, Michael
    Moy, Richard A.
    ACTA ARITHMETICA, 2020, 193 (04) : 419 - 427
  • [27] FACTORIZATION IN K[X2,X3]
    ANDERSON, DF
    CHAPMAN, S
    INMAN, F
    SMITH, WW
    ARCHIV DER MATHEMATIK, 1993, 61 (06) : 521 - 528
  • [28] Cyclic codes over M2(F2)
    Alamadhi, Adel
    Sboui, Houda
    Sole, Patrick
    Yemen, Olfa
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (09): : 2837 - 2847
  • [29] Cyclic codes over F2 + vF2
    Zhu, Shi-Xin
    Wang, Yu
    Shi, Min-Jia
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1719 - +
  • [30] Duadic Codes over F2 + uF2
    San Ling
    Patrick Solé
    Applicable Algebra in Engineering, Communication and Computing, 2001, 12 : 365 - 379