Scalable fabrication of high surface area g-C3N4 nanotubes for efficient photocatalytic hydrogen production

被引:2
|
作者
Arkhurst, Barton [1 ]
Guo, Ruiran [1 ]
Gunawan, Denny [2 ]
Oppong-Antwi, Louis [1 ]
Ashong, Andrews Nsiah [1 ]
Fan, Xinyue [1 ]
Rokh, Ghazaleh Bahman [1 ]
Chan, Sammy Lap Ip [1 ,3 ]
机构
[1] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ New South Wales, Sch Chem Engn, Particles & Catalysis Res Grp, Sydney, NSW 2052, Australia
[3] Natl Cent Univ, Dept Chem & Mat Engn, Zhongli 320317, Taiwan
关键词
Hydrogen evolution; Photocatalysis; Carbon nitride; Nanotubes; Crystallinity; Surface area; GRAPHITIC CARBON NITRIDE; H-2; EVOLUTION; WATER; SEMICONDUCTORS; NANOSHEETS; OXIDATION; NANORODS; PHOTODEGRADATION; NANOSTRUCTURE; FIXATION;
D O I
10.1016/j.ijhydene.2024.09.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this research, we present a novel facile, scalable, and template-free technique of synthesizing graphitic carbon nitride (g-C3N4) nanotubes for generating hydrogen through photocatalysis. The hybrid technique involves a two-fold mixing of the precursor materials melamine (M) and cyanuric acid (CA), involving ball milling followed by solution mixing. By varying the M:CA molar ratios, different compositions of g-C3N4 nanotubes were fabricated. The study focused on examining the surface characteristics and the photocatalytic hydrogen evolution performance of these nanotubes. Nanotubes with high specific surface area of 206 m(2) g(-1) for M:CA molar ratio of 1:3 and 178 m(2) g(-1) for M:CA molar ratio of 1:5 were produced, with H-2 evolution rates of 543 mu mol h(-1) g(-1) and 740 mu mol h(-1) g(-1) respectively, which were an increase of 4 and 5-fold, respectively, in comparison to the pristine sample. The enhanced efficiency of hydrogen production through photocatalysis by nanotubes, when contrasted with pristine material, can be ascribed to their high crystallinity, superior specific surface areas, decreased recombination rates of electron-hole pairs generated during light exposure, and improved dynamics of charge carriers. This hybrid technique provides a new pathway for cost-effective fabrication of g-C3N4 nanotubes with substantial surface areas and high yield photocatalysts on an industrial scale, without the use of templates and hydrothermal processes for efficient hydrogen generation.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 50 条
  • [41] Emerging Cocatalysts on g-C3N4 for Photocatalytic Hydrogen Evolution
    Zhu, Qiaohong
    Xu, Zehong
    Qiu, Bocheng
    Xing, Mingyang
    Zhang, Jinlong
    SMALL, 2021, 17 (40)
  • [42] Precise defect engineering g-C3N4 fabrication to improve hydrogen production performance
    Guo, Yingjie
    Liu, Gang
    Yin, Wenhui
    Zhang, Yushen
    Shi, Lei
    FUEL, 2024, 362
  • [43] Which is the photocatalytic efficiency better the g-C3N4 on surface or carbon microspheres on surface in carbon microspheres/g-C3N4?
    Jia, Chenhe
    Zhao, Xinyu
    Li, Zhiyong
    Ding, Xuejiao
    Li, Weixia
    Feng, Jing
    Ren, Yueming
    Wei, Tong
    Zhang, Mingyi
    OPTICAL MATERIALS, 2022, 131
  • [44] Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production
    Shao, Mengmeng
    Shao, Yangfan
    Chai, Jianwei
    Qu, Yuanju
    Yang, Mingyang
    Wang, Zeli
    Yang, Ming
    Ip, Weng Fai
    Kwok, Chi Tat
    Shi, Xingqiang
    Lu, Zhouguang
    Wang, Shijie
    Wang, Xuesen
    Pan, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 16748 - 16756
  • [45] Synthesis and Photocatalytic Properties of Na Doped g-C3N4 Nanotubes
    Yu F.
    Li Y.
    Liu Z.
    Cui J.
    Zhou Y.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2022, 46 (07): : 896 - 905
  • [46] Fabrication of NiCo2S4/N-deficient g-C3N4 for efficient photocatalytic H2 production
    Yang, Tao
    Hu, Xiaoyun
    Fan, Jun
    Sun, Tao
    Liu, Enzhou
    SURFACES AND INTERFACES, 2023, 42
  • [47] Visible-light-drived high photocatalytic activities of Cu/g-C3N4 photocatalysts for hydrogen production
    Fan, Mingshan
    Song, Chengjie
    Chen, Tianjun
    Yan, Xu
    Xu, Dongbo
    Gu, Wei
    Shi, Weidong
    Xiao, Lisong
    RSC ADVANCES, 2016, 6 (41) : 34633 - 34640
  • [48] Facial synthesis of dandelion-like g-C3N4/Ag with high performance of photocatalytic hydrogen production
    Li, Feihui
    Zhao, Ruiru
    Yang, Bingye
    Wang, Wei
    Liu, Yu
    Gao, Jianping
    Gong, Yunlan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (57) : 30185 - 30195
  • [49] Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance
    Li, Huijie
    Zhao, Jingli
    Geng, Yan
    Li, Zhongjun
    Li, Yike
    Wang, Jianshe
    APPLIED SURFACE SCIENCE, 2019, 496
  • [50] Fabrication of porous g-C3N4 and supported porous g-C3N4 by a simple precursor pretreatment strategy and their efficient visible-light photocatalytic activity
    Zeng, Zhenxing
    Li, Kexin
    Wei, Kai
    Dai, Yuhua
    Yan, Liushui
    Guo, Huiqin
    Luo, Xubiao
    CHINESE JOURNAL OF CATALYSIS, 2017, 38 (03) : 498 - 508