CO2 Loss into Solution: An Experimental Investigation of CO2 Electrolysis with a Membrane Electrode Assembly Cell

被引:0
|
作者
Liu, Weiming [1 ]
Dunne, Harry [1 ]
Ballotta, Bernardo [1 ]
Massie, Allyssa A. [1 ]
Ghaani, Mohammad Reza [2 ]
McKelvey, Kim [3 ]
Dooley, Stephen [1 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin D02 PN40, Ireland
[2] Trinity Coll Dublin, Sch Engn, Dept Civil Struct & Environm Engn, Dublin D02 PN40, Ireland
[3] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Sch Chem & Phys Sci, Wellington 6140, New Zealand
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 18期
基金
爱尔兰科学基金会; 欧洲研究理事会;
关键词
membrane electrode assembly cell; CO2-OH-; neutralization; pure silver membrane cathode; gas diffusion electrode; electrochemical CO2 reduction reaction (ECO2RR); hydrogen evolutionreaction (HER); GAS-DIFFUSION ELECTRODES; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROREDUCTION; EFFICIENCY; CONVERSION; CHEMICALS; SYSTEMS; WATER;
D O I
10.1021/acsaem.4c01101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In pursuit of commercial viability for carbon dioxide (CO2) electrolysis, this study investigates the operational challenges associated with membrane electrode assembly (MEA)-type CO2 electrolyzers, with a focus on CO2 loss into the solution phase through bicarbonate (HCO3-) and carbonate (CO32-) ion formation. Utilizing a silver electrode known for selectively facilitating CO2 to CO conversion, the molar production of CO2, CO, and H-2 is measured across a range of current densities from 0 to 600 mA/cm(2), while maintaining a constant CO2 inlet flow rate of 58 mL/min. The dynamics of CO2 loss are monitored through measurements of pH changes in the electrolyte and carbon elemental balance analysis. Employing the concept of conservation of elemental carbon, a chemical reaction analysis is conducted, identifying the critical role of the hydroxide (OH-) ion. At lower current densities below 125 mA/cm(2), where CO2 reduction predominates, it is observed that CO2 loss is proportional to current density, reaching up to 0.18 mmol/min, and directly correlates with the rate of OH- ion production, indicative of HCO3-/CO32- ion formation. Conversely, at higher current densities above 450 mA/cm(2), where hydrogen evolution is the dominant process, CO2 loss is shown to decouple from the OH- ion production rate with a constant limit condition of 0.12 mmol/min, regardless of the current density. This suggests that electrolyte-induced cathode flooding restricts CO2 access to cathode sites. Additionally, pH change in the electrolyte during the electrolysis further infers differing ion populations in the CO2 reduction and hydrogen evolution regimes, and their movement across the membrane. Continued monitoring of the pH change after the cessation of electricity offers insights into the accumulation of HCO3-/CO32- ion at the cathode, influencing salt formation.
引用
收藏
页码:7712 / 7723
页数:12
相关论文
共 50 条
  • [31] Assembly of highly efficient overall CO2 + H2O electrolysis cell with the matchup of CO2 reduction and water oxidation catalyst
    Zhang, Li
    Zhu, Hong-Lin
    Li, Zhong-Yi
    Zheng, Yue-Qing
    DALTON TRANSACTIONS, 2023, 52 (46) : 17273 - 17278
  • [32] Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products
    Choi, Woong
    Choi, Yongjun
    Choi, Eunsuh
    Yun, Hyewon
    Jung, Wonsang
    Lee, Woong Hee
    Oh, Hyung-Suk
    Won, Da Hye
    Na, Jonggeol
    Hwang, Yun Jeong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10363 - 10372
  • [33] Ionomer and Membrane Designs for Low-temperature CO2 and CO Electrolysis
    Deng, Huiying
    Chen, Zhuo
    Wang, Yuhang
    CHEMSUSCHEM, 2025, 18 (04)
  • [34] Photoresist dissolution into a CO2 compatible salt and CO2 solution:: Investigation of processing conditions
    Zweber, Amy E.
    Wagner, Mark
    Carbonell, Ruben G.
    ADVANCES IN RESIST MATERIALS AND PROCESSING TECHNOLOGY XXIV, 2007, 6519
  • [35] CO2 SOLUTION
    RIMMER, JG
    CHEMISTRY IN BRITAIN, 1989, 25 (11) : 1093 - 1093
  • [36] Experimental stand for CO2 membrane separation
    Wiciak, Grzegorz
    Kotowicz, Janusz
    JOURNAL OF POWER TECHNOLOGIES, 2011, 91 (04): : 171 - 178
  • [37] Experimental investigation and thermodynamic modeling of CO2 absorption by a chemical solution
    Ansarypur, Gholamreza
    Bayareh, Morteza
    Jahangiri, Alireza
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (02) : 1689 - 1697
  • [38] Experimental investigation and thermodynamic modeling of CO2 absorption by a chemical solution
    Gholamreza Ansarypur
    Morteza Bayareh
    Alireza Jahangiri
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 1689 - 1697
  • [39] EXPERIMENTAL STUDY AND SOLUTION OF CO2 REFRIGERATION
    Liu Changfeng
    Han Xianjun
    Yu Zhiqiang
    11TH IIR GUSTAV LORENTZEN CONFERENCE ON NATURAL REFRIGERANTS (2014): NATURAL REFRIGERANTS AND ENVIRONMENTAL PROTECTION, 2014, : 430 - 432
  • [40] Non-Membrane Electrolysis Cell for CO2 Reduction to CO in Propylene Carbonate/Tetrabutylammonium Perchlorate
    Shi, Jin
    Chen, Tian-You
    Shi, Feng
    Shen, Feng-xia
    Dai, Yong-Nian
    Yang, Bin
    Song, Ning
    Li, Yun-Fei
    Liu, Jian-xiong
    Wang, Yu-Dong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (03) : G51 - G55