Phase field modeling of underloads induced fatigue crack acceleration

被引:0
|
作者
Wang, Hao [1 ]
Shi, Tong [1 ]
Huang, Qiyu [1 ]
Liu, Xiaoben [1 ]
机构
[1] China Univ Petr, Natl Engn Res Ctr Pipeline Safety, MOE Key Lab Petr Engn, Beijing Key Lab Urban Oil & Gas Distribut Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase field fracture; Fatigue; Underload; Crack growth acceleration; BRITTLE-FRACTURE; GROWTH; PROPAGATION; FORMULATION; PLASTICITY;
D O I
10.1016/j.ijfatigue.2024.108547
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study proposes a novel methodology to model the fatigue crack growth acceleration under underloads using a phase field fracture framework. In this model, fatigue crack growth is characterized by the degradation of fracture toughness, with an emphasis on employing a representative loading strategy instead of explicit cyclic loading, thus accelerating simulations of high-cycle fatigue. The model integrates a zone-based crack acceleration approach that responds to single-cycle underload. Notably, the model adeptly captures the dynamics described by the Paris-Erdogan law. Post-underload crack growth acceleration is simulated by identifying an acceleration zone near the crack tip, inspired by existing models based on the plastic zone. This zone is defined by a strain energy density threshold, and the underload ratio governs the rate of fatigue damage accumulation attenuation within this area. The implementation leverages the UMAT user subroutine in Abaqus, utilizing coupled temperature-displacement elements where temperature analogously represents the phase field parameter. Experimental validation of the model confirms its ability to accurately reflect the loss of fatigue life and the acceleration of crack growth rates in compact tension and middle tension specimens. Additionally, the model shows promise for extension to periodic underloads, highlighting its potential for simulating real-world fatigue scenarios effectively.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Fatigue phase-field damage modeling of rubber
    Loew, P. J.
    Peters, B.
    Beex, L. A. A.
    CONSTITUTIVE MODELS FOR RUBBER XI, 2019, : 408 - 412
  • [42] Electric-field-induced fatigue crack growth in ferroelectric ceramics
    Fang, D. N.
    Zhang, Y. H.
    Mao, G. Z.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2010, 54 (02) : 98 - 104
  • [43] Electric-field-induced fatigue crack growth in ferroelectric ceramics
    Liu, B
    Fang, DN
    Hwang, KC
    MATERIALS LETTERS, 2002, 54 (5-6) : 442 - 446
  • [44] ELECTRIC-FIELD-INDUCED FATIGUE-CRACK GROWTH IN PIEZOELECTRICS
    CAO, HC
    EVANS, AG
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1994, 77 (07) : 1783 - 1786
  • [45] Phase-field modeling of crack growth and interaction in rock
    Bin Xu
    Tao Xu
    Yanchao Xue
    Michael J. Heap
    P. G. Ranjith
    P. L. P. Wasantha
    Zhiguo Li
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8
  • [46] Multiscale crystal-plasticity phase field and extended finite element methods for fatigue crack initiation and propagation modeling
    Sadeghirad, Alireza
    Momeni, Kasra
    Ji, Yanzhou
    Ren, Xiang
    Chen, Long-Qing
    Lua, Jim
    INTERNATIONAL JOURNAL OF FRACTURE, 2019, 216 (01) : 41 - 57
  • [47] Multiscale crystal-plasticity phase field and extended finite element methods for fatigue crack initiation and propagation modeling
    Alireza Sadeghirad
    Kasra Momeni
    Yanzhou Ji
    Xiang Ren
    Long-Qing Chen
    Jim Lua
    International Journal of Fracture, 2019, 216 : 41 - 57
  • [48] Phase-field modeling of crack growth and interaction in rock
    Xu, Bin
    Xu, Tao
    Xue, Yanchao
    Heap, Michael J.
    Ranjith, P. G.
    Wasantha, P. L. P.
    Li, Zhiguo
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2022, 8 (06)
  • [49] On the phase field modeling of crack growth and analytical treatment on the parameters
    Farrahi, Gholam Hossein
    Javanbakht, Mandi
    Jafarzadeh, Hossein
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2020, 32 (03) : 589 - 606
  • [50] Phase-field modeling of crack propagation in multiphase systems
    Schneider, Daniel
    Schoof, Ephraim
    Huang, Yunfei
    Selzer, Michael
    Nestler, Britta
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 186 - 195