A comparison method for the fractional Laplacian and applications

被引:1
|
作者
Ataei, Alireza [1 ]
Tavakoli, Alireza [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
关键词
Nonlinear eigenvalue problems; Hopf's Lemma; Fractional Laplacian; STRONG MAXIMUM PRINCIPLE; EQUATIONS; REGULARITY;
D O I
10.1016/j.aim.2024.109901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary behavior of solutions to fractional Laplacian. As the first result, the isolation of the first eigenvalue of the fractional Lane-Emden equation is proved in the bounded open sets with Wiener regular boundary. Then, a generalized Hopf's lemma and a global boundary Harnack inequality are proved for the fractional Laplacian. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:29
相关论文
共 50 条
  • [41] ANALYSIS OF A SINC-GALERKIN METHOD FOR THE FRACTIONAL LAPLACIAN\ast
    Antil, Harbir
    Dondl, Patrick W.
    Striet, Ludwig
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2967 - 2993
  • [42] Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications
    Ciaurri, Oscar
    Roncal, Luz
    Stinga, Pablo Raul
    Torrea, Jose L.
    Luis Varona, Juan
    ADVANCES IN MATHEMATICS, 2018, 330 : 688 - 738
  • [43] Bilevel optimization, deep learning and fractional Laplacian regularizatin with applications in tomography
    Antil, Harbir
    Di, Zichao Wendy
    Khatri, Ratna
    Inverse Problems, 1600, 36 (06):
  • [44] The Fractional Laplacian with Reflections
    Bogdan, Krzysztof
    Kunze, Markus
    POTENTIAL ANALYSIS, 2024, 61 (02) : 317 - 345
  • [45] On the Generalized Fractional Laplacian
    Chenkuan Li
    Fractional Calculus and Applied Analysis, 2021, 24 : 1797 - 1830
  • [46] ON THE GENERALIZED FRACTIONAL LAPLACIAN
    Li, Chenkuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (06) : 1797 - 1830
  • [47] Fractional Laplacian on the torus
    Roncal, Luz
    Stinga, Pablo Raul
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (03)
  • [48] FRACTIONAL LAPLACIAN PYRAMIDS
    Delgado-Gonzalo, Ricard
    Tafti, Pouya Dehghani
    Unser, Michael
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3809 - 3812
  • [49] On the Fractional Dunkl–Laplacian
    Fethi Bouzeffour
    Wissem Jedidi
    Fractional Calculus and Applied Analysis, 2024, 27 : 433 - 457
  • [50] Comparison and sub-supersolution principles for the fractional p(x)-Laplacian
    Bahrouni, Anouar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1363 - 1372