Compressive properties and biocompatibility of additively manufactured lattice structures by using bioactive materials

被引:4
|
作者
Li, Shuai [1 ]
Wang, Tianqi [2 ]
Chen, Shuai [3 ]
Li, Yingze [4 ]
Zou, Yajun [4 ]
Cao, Bo [5 ]
Hu, Jiqiang [4 ]
Tan, Xiaojun [5 ]
Wang, Bing [4 ]
机构
[1] Kunming Univ Sci & Technol, Dept Engn Mech, Kunming 650500, Peoples R China
[2] Harbin Med Univ, Affiliated Hosp 1, Sch Stomatol, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Zhengzhou Res Inst, Zhengzhou 450018, Peoples R China
[4] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[5] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Additively manufactured; Lattice structures; Elastic modulus; Orthopedic repair; REINFORCED PEEK COMPOSITES; SURFACE-ROUGHNESS; IN-VITRO; BONE; BEHAVIOR; FATIGUE;
D O I
10.1016/j.tws.2024.112469
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Porous bioactive materials were widely used in orthopedic implant fields because of their excellent mechanical properties and porous spaces. However, most porous types are predominantly stacked in two-dimensional configurations, which significantly limits their mechanical property range and adversely affects the modulus matching between the porous implants and surrounding bone tissues. Hence, various lattice structures were prepared using 3D printing technology with bioactive materials, and characterized by mechanical and biological tests. Numerical simulations were conducted to analyze the effect of relative density and geometric parameters on the equivalent compressive properties of the lattice structures. The results showed that the lattice structure exhibited a broad elastic modulus range, which can be adjusted to align with the mechanical properties of human cortical and cancellous bones, thereby helping to mitigate stress shielding in orthopedic implants. The biocompatibility of the 3D-printed solid materials was assessed in vitro using a cell counting assay kit-8 (CCK-8). The results indicated that poly-ether-ether-ketone (PEEK), carbon fiber reinforced PEEK (CFR/PEEK), nylon, and titanium (Ti) alloy all exhibited good biocompatibility, with no significant differences observed among the four materials. This study further enhances the understanding of bioactive lattice structures in the biomedical field and offers new possibilities for orthopedic repair.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Compressive properties and collapse behavior of additively-manufactured layered-hybrid lattice structures under static and dynamic loadings
    Li, Shi
    Hu, Menglei
    Xiao, Lijun
    Song, Weidong
    THIN-WALLED STRUCTURES, 2020, 157 (157)
  • [22] Mechanical characterization and constitutive modeling of additively-manufactured polymeric materials and lattice structures
    Guo, Xiao
    Wang, Erdong
    Yang, Hang
    Zhai, Wei
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2024, 189
  • [23] Probabilistic analysis of additively manufactured polymer lattice structures
    Druecker, Sven
    Luedeker, Julian Kajo
    Blecken, Marvin
    Kurt, Arne
    Betz, Kirill
    Kriegesmann, Benedikt
    Fiedler, Bodo
    MATERIALS & DESIGN, 2022, 213
  • [24] Tuning Modal Behavior of Additively Manufactured Lattice Structures
    Beghini, Marco
    Grossi, Tommaso
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Senegaglia, Ivan
    del Turco, Paolo
    Fardelli, Andrea
    Morante, Francesco
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (07):
  • [25] The effect of anisotropy on the optimization of additively manufactured lattice structures
    Stankovic, Tino
    Mueller, Jochen
    Shea, Kristina
    ADDITIVE MANUFACTURING, 2017, 17 : 67 - 76
  • [26] On the determination of residual stresses in additively manufactured lattice structures
    Fritsch, Tobias
    Sprengel, Maximilian
    Evans, Alexander
    Farahbod-Sternahl, Lena
    Saliwan-Neumann, Romeo
    Hofmann, Michael
    Bruno, Giovanni
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 228 - 236
  • [27] Design of Additively Manufactured Lattice Structures for Biomedical Applications
    Martorelli, Massimo
    Gloria, Antonio
    Bignardi, Cristina
    Cali, Michele
    Maietta, Sverio
    JOURNAL OF HEALTHCARE ENGINEERING, 2020, 2020
  • [28] TUNING MODAL BEHAVIOUR OF ADDITIVELY MANUFACTURED LATTICE STRUCTURES
    Beghini, Marco
    Grossi, Tommaso
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Senegaglia, Ivan
    del Turco, Paolo
    Fardelli, Andrea
    Morante, Francesco
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 11B, 2023,
  • [29] Design of Additively Manufactured Lattice Structures for Tissue Regeneration
    Lanzotti, Antonio
    Martorelli, Massimo
    Russo, Teresa
    Gloria, Antonio
    THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 2154 - 2159
  • [30] Additively manufactured polymethyl methacrylate lattice structures: Effect of 3D hybridization on compressive strength
    Dutta, Hrishikesh
    Veeman, Dhinakaran
    Vellaisamy, Murugan
    MATERIALS LETTERS, 2024, 377