Content-Aware Few-Shot Meta-Learning for Cold-Start Recommendation on Portable Sensing Devices

被引:0
|
作者
Lv, Xiaomin [1 ]
Fang, Kai [2 ]
Liu, Tongcun [2 ]
机构
[1] Zhejiang Shuren Univ, Sch Informat Technol, Hangzhou 310015, Peoples R China
[2] Zhejiang A&F Univ, Sch Math & Comp Sci, Hangzhou 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
recommender system; cold start; meta-learning; representation learning;
D O I
10.3390/s24175510
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The cold-start problem in sequence recommendations presents a critical and challenging issue for portable sensing devices. Existing content-aware approaches often struggle to effectively distinguish the relative importance of content features and typically lack generalizability when processing new data. To address these limitations, we propose a content-aware few-shot meta-learning (CFSM) model to enhance the accuracy of cold-start sequence recommendations. Our model incorporates a double-tower network (DT-Net) that learns user and item representations through a meta-encoder and a mutual attention encoder, effectively mitigating the impact of noisy data on auxiliary information. By framing the cold-start problem as few-shot meta-learning, we employ a model-agnostic meta-optimization strategy to train the model across a variety of tasks during the meta-learning phase. Extensive experiments conducted on three real-world datasets-ShortVideos, MovieLens, and Book-Crossing-demonstrate the superiority of our model in cold-start recommendation scenarios. Compared to MetaCs-DNN, the second-best approach, CFSM, achieves improvements of 1.55%, 1.34%, and 2.42% under the AUC metric on the three datasets, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Few-shot Edge Classification in Graph Meta-learning
    Yang, Xiaoxiao
    Xu, Jungang
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 166 - 172
  • [42] Decomposed Meta-Learning for Few-Shot Sequence Labeling
    Ma, Tingting
    Wu, Qianhui
    Jiang, Huiqiang
    Lin, Jieru
    Karlsson, Borje F.
    Zhao, Tiejun
    Lin, Chin-Yew
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 1980 - 1993
  • [43] Meta-Learning for Few-Shot Plant Disease Detection
    Chen, Liangzhe
    Cui, Xiaohui
    Li, Wei
    FOODS, 2021, 10 (10)
  • [44] Meta-Learning for Few-Shot Named Entity Recognition
    de Lichy, Cyprien
    Glaude, Hadrien
    Campbell, William
    1ST WORKSHOP ON META LEARNING AND ITS APPLICATIONS TO NATURAL LANGUAGE PROCESSING (METANLP 2021), 2021, : 44 - 58
  • [45] Meta-Learning for Few-Shot Time Series Classification
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    Vishnu, T. V.
    PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 28 - 36
  • [46] Meta-Learning for Few-Shot Land Cover Classification
    Russwurm, Marc
    Wang, Sherrie
    Koerner, Marco
    Lobell, David
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 788 - 796
  • [47] META-LEARNING FOR FEW-SHOT TIME SERIES CLASSIFICATION
    Wang, Sherrie
    Russwurm, Marc
    Koerner, Marco
    Lobell, David B.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7041 - 7044
  • [48] Subgraph-Aware Few-Shot Inductive Link Prediction Via Meta-Learning
    Zheng, Shuangjia
    Mai, Sijie
    Sun, Ya
    Hu, Haifeng
    Yang, Yuedong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6512 - 6517
  • [49] Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
    Goldblum, Micah
    Fowl, Liam
    Goldstein, Tom
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [50] Stress Testing of Meta-learning Approaches for Few-shot Learning
    Aimen, Aroof
    Sidheekh, Sahil
    Madan, Vineet
    Krishnan, Narayanan C.
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 38 - 44