Life Cycle Assessment of Industrial Wastewater Treatment Trains

被引:0
|
作者
Tran, Dana [1 ]
Weidhaas, Jennifer [1 ]
机构
[1] Civil & Environm Engn, 110 Cent Campus Dr, Salt Lake City, UT 84112 USA
来源
ADVANCED SUSTAINABLE SYSTEMS | 2024年 / 8卷 / 12期
关键词
2; 3-nitro-1; 4-triazole-5-one (NTO); granular activated carbon; insensitive munitions; ion exchange; life cycle assessment; MEMBRANE FILTRATION; RDX; BIODEGRADATION; DEGRADATION;
D O I
10.1002/adsu.202400246
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alternative technologies to granular activated carbon (GAC) are of interest to improve the sustainability and reduce the cost of munitions wastewater treatment. Research efforts have highlighted GAC alternatives, yet few reports of environmental and economic impacts associated with these technologies are available. Herein, a life cycle assessment (LCA) aids in assessment of environmental impacts associated with six munitions wastewater treatment configurations-specifically GAC, compared to five configurations that include combinations of ion exchange (IX), reverse osmosis (RO), aerobic granular reactors (AGR), UV/H2O2, and ozone technologies. The LCA compares environmental impacts generated by treating 1 m3 of munitions wastewater, impacts by life cycle stage, and effects of IX, RO, and GAC replacement frequency. Results show that IX resin pairs with AGR (for flow-through treatment) and ozone (for IX regenerant treatment) generated 22 +/- 18% less impact than GAC in nine of ten environmental impact categories during production, transportation, and disposal. Treatment trains with ozone or AGR produce 35% less environmental impact than those with UV/H2O2. Production and use stages generate more environmental impacts than transportation and disposal stages for most treatment technologies. This LCA provides insights into the sustainability of six munition wastewater treatment technologies and identifies areas where treatment sustainability can be improved. Life cycle assessment of industrial wastewater treatment trains for munitions wastewater reveals that ion exchange resin beds coupled with aerobic granular reactors (AGR) and ozone have less environmental impact than granular activated carbon. Treatment trains with ozone or AGR produce less environmental impact than those with UV/H2O2. image
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment
    Flores, Laura
    Garcia, Joan
    Pena, Rocio
    Garfi, Marianna
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 659 : 1567 - 1576
  • [42] Electrochemical Wastewater Treatment Technologies Through Life Cycle Assessment: A Review
    Nath, Soumitra
    CHEMBIOENG REVIEWS, 2024,
  • [43] Life cycle assessment, a decision-making tool in wastewater treatment facilities
    Ahmed, Mohamed Tawfic
    WASTEWATER REUSED - RISK ASSESSMENT, DECISION-MAKING AND ENVIRONMENTAL SECURITY, 2007, : 305 - +
  • [44] Life cycle assessment of advanced oxidation processes for olive mill wastewater treatment
    Chatzisymeon, Efthalia
    Foteinis, Spyros
    Mantzavinos, Dionissios
    Tsoutsos, Theocharis
    JOURNAL OF CLEANER PRODUCTION, 2013, 54 : 229 - 234
  • [45] Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands
    Resende, Juliana Dalia
    Nolasco, Marcelo Antunes
    Pacca, Sergio Almeida
    RESOURCES CONSERVATION AND RECYCLING, 2019, 148 : 170 - 177
  • [46] Environmental Impact Analysis of Wastewater Treatment Process Based on Life Cycle Assessment
    Zhao, Chenchen
    Zhang, Yun
    Liang, Kaiming
    Li, Jinhua
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT AND COMPUTING TECHNOLOGY, 2015, 30 : 1614 - 1617
  • [47] Biological wastewater treatment: a comprehensive sustainability analysis using life cycle assessment
    Kumar, Ritesh
    Patel, Kulvendra
    Singh, S. K.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (05)
  • [48] METAL DEPLETION ASSESSMENT OF WASTEWATER TREATMENT SYSTEM BASED ON LIFE CYCLE ANALYSIS
    Burchart-Korol, Dorota
    Zawartka, Pawel
    Bondaruk, Jan
    Kruczek, Mariusz
    METAL 2017: 26TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2017, : 2004 - 2009
  • [49] Life cycle assessment of water from the pumping station to the wastewater treatment plant
    Lassaux, Stephane
    Renzoni, Robert
    Germain, Albert
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2007, 12 (02): : 118 - 126
  • [50] Life cycle assessment of electrodialysis for sidestream nitrogen recovery in municipal wastewater treatment
    Vineyard, Donald
    Hicks, Andrea
    Karthikeyan, K. G.
    Davidson, Christy
    Barak, Phillip
    CLEANER ENVIRONMENTAL SYSTEMS, 2021, 2