Enhancing the accuracy of fruit freshness detection by utilizing transfer learning and customizing convolutional neural network(CNN).

被引:0
|
作者
Rahman, Nabila [1 ]
Arefin, Mahira [1 ]
Rahman, Sabila [1 ]
Islam, Md Shamiul [1 ]
Khatun, Tammy [1 ]
Akter, Usha [1 ]
机构
[1] Bangladesh Univ Business & Technol, Dept Comp Sci & Engn, Dhaka, Bangladesh
关键词
Fresh Fruit; CNN; InceptionV3; RseNet50; Rotten Fruit; Agriculture;
D O I
10.1109/ICMI60790.2024.10585689
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Food quality and safety are paramount concerns in our modern world and perishable goods, especially fruits and vegetables, stand at the intersection of these concerns. The ability to accurately determine the freshness of these products not only impacts food safety but also holds the key to reducing waste in our food supply chain. To enhance the mean lifespan of humans, it is imperative to eradicate the potential for infectious illnesses. The majority of a high-risk community's diet consists of fruits and vegetables. Consequently, differentiating spoiled fruits from viable ones is critical for their preservation. Automation technology is an indispensable component of daily existence. The principal source of wealth is agriculture in the modern world. Daily growth is observed in the sales volume of fresh produce. People who prioritize their health select only high-quality, nutritious fresh fruits. In this paper, we present a novel approach that leverages state-of-the-art artificial intelligence and computer vision techniques, including Convolutional Neural Networks (CNN), ResNet50, VGG16 and InceptionV3 to tackle the challenge of assessing the quality of fruits and vegetables. By automating the evaluation process, our method goes beyond the traditional, subjective, and time-consuming ones. Using the power of deep learning, we present a complete framework that can tell with unprecedented accuracy whether a wide range of produce items are fresh and safe to eat.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Wheat Diseases Detection and Classification using Convolutional Neural Network (CNN)
    Hossen, Md Helal
    Mohibullah, Md
    Muzammel, Chowdhury Shahriar
    Ahmed, Tasniya
    Acharjee, Shuvra
    Panna, Momotaz Begum
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 719 - 726
  • [42] Detection and Identification of Abaca Diseases using a Convolutional Neural Network CNN
    Buenconsejo, Lyndon T.
    Linsangan, Noel B.
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 94 - 98
  • [43] Enhancing healthcare recommendation: transfer learning in deep convolutional neural networks for Alzheimer disease detection
    Pandey, Purushottam Kumar
    Pruthi, Jyoti
    Alzahrani, Saeed
    Verma, Anshul
    Zohra, Benazeer
    FRONTIERS IN MEDICINE, 2024, 11
  • [44] Transfer Learning with Manifold Regularized Convolutional Neural Network
    Zhuang, Fuzhen
    Huang, Lang
    He, Jia
    Ma, Jixin
    He, Qing
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS, 2017, 10412 : 483 - 494
  • [45] Sparse Deep Transfer Learning for Convolutional Neural Network
    Liu, Jiaming
    Wang, Yali
    Qiao, Yu
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2245 - 2251
  • [46] Fetal Hypoxia Detection Based on Deep Convolutional Neural Network with Transfer Learning Approach
    Comert, Zafer
    Kocamaz, Adnan Fatih
    SOFTWARE ENGINEERING AND ALGORITHMS IN INTELLIGENT SYSTEMS, 2019, 763 : 239 - 248
  • [47] Rapid Image Detection of Tree Trunks Using a Convolutional Neural Network and Transfer Learning
    Yang, Ting-Ting
    Zhou, Su-Yin
    Xu, Ai-Jun
    IAENG International Journal of Computer Science, 2021, 48 (02) : 1 - 8
  • [48] Automatic Polyp Detection in Colonoscopy Images: Convolutional Neural Network, Dataset and Transfer Learning
    Sun, Mingjian
    Zhang, Xiao
    Qu, Ge
    Zou, Mengshu
    Du, Hai
    Ma, Liyong
    Qu, Yawei
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (01) : 126 - 133
  • [49] Detection of Epileptic Seizure Using Pretrained Deep Convolutional Neural Network and Transfer Learning
    Nogay, Hidir Selcuk
    Adeli, Hojjat
    EUROPEAN NEUROLOGY, 2021, 83 (06) : 602 - 614
  • [50] Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning
    Georgakopoulos, S., V
    Kottari, K.
    Delibasis, K.
    Plagianakos, V. P.
    Maglogiannis, I
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 404 - 414