Pythagorean triples using the relativistic velocity addition formula

被引:0
|
作者
Sporn, Howard [1 ]
机构
[1] Queensborough Community Coll, Dept Math & Comp Sci, 3 Bayside, New York, NY 11364 USA
来源
MATHEMATICAL GAZETTE | 2024年 / 108卷 / 572期
关键词
D O I
10.1017/mag.2024.60
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the special theory of relativity, there is an unusual formula for addition of velocities. We will use this formula to generate Pythagorean triples. We define a Pythagorean triple in the usual manner as a triple of positive integers (a, b, c) such that a(2) + b(2) = c(2). The numbers a and b are called legs, and c is called the hypotenuse. Later, we will allow b to take on the value of any integer. A primitive Pythagorean triple is a Pythagorean triple for which a, b and c are relatively prime.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [31] ON THE ALGEBRAIC STRUCTURE OF PYTHAGOREAN TRIPLES
    Anatriello, Giuseppina
    Vincenzi, Giovanni
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2024, 102 (01):
  • [32] Metallic means and Pythagorean triples
    Rajput, Chetansing
    Manjunath, Hariprasad
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (01) : 184 - 194
  • [33] Frobenius numbers of Pythagorean triples
    Gil, Byung Keon
    Han, Ji-Woo
    Kim, Tae Hyun
    Koo, Ryun Han
    Lee, Bon Woo
    Lee, Jaehoon
    Nam, Kyeong Sik
    Park, Hyeon Woo
    Park, Poo-Sung
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (02) : 613 - 619
  • [34] AN OMEGA THEOREM ON PYTHAGOREAN TRIPLES
    KUHLEITNER, M
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1993, 63 : 105 - 113
  • [35] PYTHAGOREAN TRIPLES AND TRIANGULAR NUMBERS
    BALLEW, DW
    WEGER, RC
    FIBONACCI QUARTERLY, 1979, 17 (02): : 168 - 172
  • [36] Pythagorean Triples with Common Sides
    Ochieng, Raymond Calvin
    Chikunji, Chiteng'a John
    Onyango-Otieno, Vitalis
    JOURNAL OF MATHEMATICS, 2019, 2019
  • [37] On Pythagorean triples and their harmonic fourths
    Rieger, GJ
    JOURNAL OF NUMBER THEORY, 2001, 91 (01) : 164 - 173
  • [38] APPEARANCE OF INTEGERS IN PYTHAGOREAN TRIPLES
    WESTPHAL, WR
    MARSTON, HM
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03): : 303 - 304
  • [39] Another representation of Pythagorean triples
    Maynard, Philip
    MATHEMATICAL GAZETTE, 2005, 89 (516): : 456 - 458
  • [40] PYTHAGOREAN AND TRIANGULAR NUMBER TRIPLES
    WULCZYN, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 100 - &