Sparse Fuzzy C-Means Clustering with Lasso Penalty

被引:1
|
作者
Parveen, Shazia [1 ]
Yang, Miin-Shen [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan 32023, Taiwan
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 09期
关键词
clustering; fuzzy c-means (FCM); sparse FCM (S-FCM); lasso; S-FCM-Lasso; evaluation measures; SELECTION; ALGORITHMS;
D O I
10.3390/sym16091208
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Ensemble Clustering via Fuzzy c-Means
    Wan, Xin
    Lin, Hao
    Li, Hong
    Liu, Guannan
    An, Maobo
    2017 14TH INTERNATIONAL CONFERENCE ON SERVICES SYSTEMS AND SERVICES MANAGEMENT (ICSSSM), 2017,
  • [22] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [23] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515
  • [24] The global Fuzzy C-Means clustering algorithm
    Wang, Weina
    Zhang, Yunjie
    Li, Yi
    Zhang, Xiaona
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3604 - +
  • [25] Underdetermined Blind Source Separation Based on Fuzzy C-Means Clustering and Sparse Representation
    Zhang, Chaozhu
    Zheng, Cui
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2011), 2011, 8285
  • [26] On Fuzzy c-Means and Membership Based Clustering
    Torra, Vicenc
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I (IWANN 2015), 2015, 9094 : 597 - 607
  • [27] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [28] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [29] Gaussian Collaborative Fuzzy C-Means Clustering
    Yunlong Gao
    Zhihao Wang
    Huidui Li
    Jinyan Pan
    International Journal of Fuzzy Systems, 2021, 23 : 2218 - 2234
  • [30] Fuzzy Approaches To Hard c-Means Clustering
    Runkler, Thomas A.
    Keller, James M.
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,