SV-Learner: Support-Vector Contrastive Learning for Robust Learning With Noisy Labels

被引:1
|
作者
Liang, Xin [1 ]
Ji, Yanli [1 ,2 ]
Zheng, Wei-Shi [3 ]
Zuo, Wangmeng [4 ]
Zhu, Xiaofeng [1 ,5 ]
机构
[1] UESTC, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
[2] UESTC, Sch Comp Sci & Engn, Chengdu 610056, Peoples R China
[3] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Peoples R China
[4] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[5] UESTC, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
关键词
Noise measurement; Self-supervised learning; Vectors; Noise; Reliability; Training; Support vector machines; Learning with noisy labels; semi-supervised learning; support - vector contrastive learning (SVCL);
D O I
10.1109/TKDE.2024.3386829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Noisy-label data inevitably gives rise to confusion in various perception applications. In this work, we revisit the theory of support vector machines (SVMs) which mines support vectors to build the maximum-margin hyperplane for robust classification, and propose a robust-to-noise deep learning framework, SV-Learner, including the Support Vector Contrastive Learning (SVCL) and Support Vector-based Noise Screening (SVNS). The SV-Learner mines support vectors to solve the learning problem with noisy labels (LNL) reliably. SVCL adopts support vectors as positive and negative samples, driving robust contrastive learning to enlarge the feature distribution margin for learning convergent feature distributions. SVNS uses support vectors with valid labels to assist in screening noisy ones from confusable samples for reliable clean-noisy sample screening. Finally, Semi-Supervised classification is performed to realize the recognition of noisy samples. Extensive experiments are evaluated on CIFAR-10, CIFAR-100, Clothing1M, and Webvision datasets, and results demonstrate the effectiveness of our proposed approach.
引用
收藏
页码:5409 / 5422
页数:14
相关论文
共 50 条
  • [41] PNP: Robust Learning from Noisy Labels by Probabilistic Noise Prediction
    Sun, Zeren
    Shen, Fumin
    Huang, Dan
    Wang, Qiong
    Shu, Xiangbo
    Yao, Yazhou
    Tang, Jinhui
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5301 - 5310
  • [42] Distributionally Robust Federated Learning for Network Traffic Classification With Noisy Labels
    Shi, Siping
    Guo, Yingya
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 6212 - 6226
  • [43] Support vector machines learning noisy polynomial rules
    Opper, M
    Urbanczik, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 302 (1-4) : 110 - 118
  • [44] Robust classifier learning with fuzzy class labels for large-margin support vector machines
    Yang, Chan-Yun
    Chou, Jui-Jen
    Lian, Feng-Li
    NEUROCOMPUTING, 2013, 99 : 1 - 14
  • [45] Partial Label Learning with Noisy Labels
    Zhao, Pan
    Tang, Long
    Pan, Zhigeng
    Annals of Data Science, 2025, 12 (01) : 199 - 212
  • [46] Augmentation Strategies for Learning with Noisy Labels
    Nishi, Kento
    Ding, Yi
    Rich, Alex
    Hollerer, Tobias
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8018 - 8027
  • [47] Learning with Neighbor Consistency for Noisy Labels
    Iscen, Ahmet
    Valmadre, Jack
    Arnab, Anurag
    Schmid, Cordelia
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4662 - 4671
  • [48] To Aggregate or Not? Learning with Separate Noisy Labels
    Wei, Jiaheng
    Zhu, Zhaowei
    Luo, Tianyi
    Amid, Ehsan
    Kumar, Abhishek
    Liu, Yang
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2523 - 2535
  • [49] A learning method for robust support vector machines
    Guo, J
    Takahashi, N
    Nishi, T
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 474 - 479
  • [50] DEEP LEARNING CLASSIFICATION WITH NOISY LABELS
    Sanchez, Guillaume
    Guis, Vincente
    Marxer, Ricard
    Bouchara, Frederic
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2020,