Classifying Breast Cancer Using Deep Convolutional Neural Network Method

被引:1
|
作者
Rahman, Musfequa [1 ]
Deb, Kaushik [1 ]
Jo, Kang-Hyun [2 ]
机构
[1] Chittagong Univ Engn & Technol CUET, Dept Comp Sci & Engn, Chattogram 4349, Bangladesh
[2] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 44610, South Korea
来源
关键词
Transfer Learning; Convolutional Neural Network; Magnification Factor; Breast Cancer Classification;
D O I
10.1007/978-981-99-4914-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The efficacy of conventional classification systems is contingent upon the accurate representation of data and a substantial portion of the effort invested in feature engineering, which is a laborious and time-consuming process requiring expert domain knowledge. In contrast, deep learning has the capacity to automatically identify and extract discriminative information from data without the need for manual feature creation by a domain expert. In particular, Convolutional Neural Networks (CNNs), a type of deep feedforward network, have garnered attention from researchers. This study conducts several preliminary experiments to classify breast cancer histopathology images using deep learning, given the small number and high resolution of training samples. The proposed approach is evaluated on the publicly available BreaKHis dataset, utilizing both a scratch model and transfer learning pre trained models. A comparison of the proposed scratch method to alternative techniques was carried out using a suite of performance evaluation metrics. The results indicate that the scratch model, with its independent magnification factor, achieved greater accuracy, with a binary classification accuracy of 99.5% and a multiclass classification accuracy of 96.1%.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [21] DIAGNOSIS OF BREAST CANCER USING MULTISCALE CONVOLUTIONAL NEURAL NETWORK
    Yektaei, Homayoon
    Manthouri, Mohammad
    Farivar, Faezeh
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2019, 31 (05):
  • [22] A Deep Convolutional Neural Network for classifying waste containers as full or not full
    Fonseca, Bania J.
    Ali, Felermino D. M. A.
    Saide, Saide M.
    2019 5TH IEEE INTERNATIONAL SMART CITIES CONFERENCE (IEEE ISC2 2019), 2019, : 54 - 59
  • [23] A Deep Multi-scale Convolutional Neural Network for Classifying Heartbeats
    Bai, Mengyao
    Xu, Yongjun
    Wang, Lianyan
    Wei, Zhihui
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [24] Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network
    Ma, Danying
    Shang, Linwei
    Tang, Jinlan
    Bao, Yilin
    Fu, Juanjuan
    Yin, Jianhua
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 256
  • [25] Classifying multi-category images using Deep Learning : A Convolutional Neural Network Model
    Bandhu, Ardhendu
    Roy, Sanjiban Sekhar
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 915 - 919
  • [26] Classifying Malware Represented as Control Flow Graphs using Deep Graph Convolutional Neural Network
    Yan, Jiaqi
    Yan, Guanhua
    Jin, Dong
    2019 49TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN 2019), 2019, : 52 - 63
  • [27] Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
    Das, Himanish Shekhar
    Das, Akalpita
    Neog, Anupal
    Mallik, Saurav
    Bora, Kangkana
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2023, 13
  • [28] Breast Cancer Detection using Deep Neural Network
    Goni, Md Omaer Faruq
    Hasnain, Fahim Md Sifnatul
    Siddique, Md Abu Ismail
    Jyoti, Oishi
    Rahaman, Md Habibur
    2020 23RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT 2020), 2020,
  • [29] Automated Detection and Classification of Breast Cancer Nuclei with Deep Convolutional Neural Network
    Balasundaram, Shanmugham
    Balasundaram, Revathi
    Rasuthevar, Ganesan
    Joseph, Christeena
    Vimala, Annie Grace
    Rajendiran, Nanmaran
    Kaliyamurthy, Baskaran
    JOURNAL OF ICT RESEARCH AND APPLICATIONS, 2021, 15 (02) : 139 - 151
  • [30] Classifying Calamansi (Citrofortunella microcarpa) using Convolutional Neural Network
    Custodio, Epie F.
    Hernandez, Alexander A.
    19TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED 2021), 2021, : 180 - 185