Nanomaterial-based therapeutics for enhanced antifungal therapy

被引:2
|
作者
Liu, Fang [1 ]
Chen, Yongcheng [1 ]
Huang, Yue [1 ]
Jin, Qiao [1 ]
Ji, Jian [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Minist Educ, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Sch Med, State Key Lab Transvasc Implantat Devices, 88 Jiefang Rd, Hangzhou 310009, Peoples R China
基金
中国国家自然科学基金;
关键词
PROTECTIVE IMMUNE-RESPONSES; CANDIDA-ALBICANS BIOFILMS; LIPOSOMAL AMPHOTERICIN-B; BLOOD-BRAIN-BARRIER; CELL-WALL; SYSTEMIC CANDIDIASIS; TRANSDERMAL DELIVERY; FUSARIUM INFECTIONS; FUNGAL KERATITIS; DRUG-DELIVERY;
D O I
10.1039/d4tb01484g
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The application of nanotechnology in antifungal therapy is gaining increasing attention. Current antifungal drugs have significant limitations, such as severe side effects, low bioavailability, and the rapid development of resistance. Nanotechnology offers an innovative solution to address these issues. This review discusses three key strategies of nanotechnology to enhance antifungal efficacy. Firstly, nanomaterials can enhance their interaction with fungal cells via ingenious surface tailoring of nanomaterials. Effective adhesion of nanoparticles to fungal cells can be achieved by electrostatic interaction or specific targeting to the fungal cell wall and cell membrane. Secondly, stimuli-responsive nanomaterials are developed to realize smart release of drugs in the specific microenvironment of pathological tissues, such as the fungal biofilm microenvironment and inflammatory microenvironment. Thirdly, nanomaterials can be designed to cross different physiological barriers, effectively addressing challenges posed by skin, corneal, and blood-brain barriers. Additionally, some new nanomaterial-based strategies in treating fungal infections are discussed, including the development of fungal vaccines, modulation of macrophage activity, phage therapy, the application of high-throughput screening in drug discovery, and so on. Despite the challenges faced in applying nanotechnology to antifungal therapy, its significant potential and innovation open new possibilities for future clinical antifungal applications. This review comprehensively explores the application of nanotechnology for antifungal therapy, particularly focusing on enhancing interaction with fungi, stimuli-responsive drug release in fungal infected tissues, and crossing biological barriers.
引用
收藏
页码:9173 / 9198
页数:26
相关论文
共 50 条
  • [41] 3D cultures for modeling nanomaterial-based photothermal therapy
    Darrigues, Emilie
    Nima, Zeid A.
    Griffin, Robert J.
    Anderson, James M.
    Biris, Alexandru S.
    Rodriguez, Analiz
    NANOSCALE HORIZONS, 2020, 5 (03) : 400 - 430
  • [42] Nanomaterial-based sensors in analytical chemistry
    Taisuke Shimada
    Analytical Sciences, 2024, 40 : 357 - 358
  • [43] Nanomaterial-based methods for sepsis management
    Alipourfard, Iraj
    Darvishi, Mohammad
    Khalighfard, Arghavan
    Ghazi, Farhood
    Mobed, Ahmad
    ENZYME AND MICROBIAL TECHNOLOGY, 2024, 174
  • [44] Nanomaterial-based ophthalmic drug delivery
    Xie, Guocheng
    Lin, Sisi
    Wu, Feng
    Liu, Jinyao
    ADVANCED DRUG DELIVERY REVIEWS, 2023, 200
  • [45] Tiny Medicine: Nanomaterial-Based Biosensors
    Yun, Yeo-Heung
    Eteshola, Edward
    Bhattacharya, Amit
    Dong, Zhongyun
    Shim, Joon-Sub
    Conforti, Laura
    Kim, Dogyoon
    Schulz, Mark J.
    Ahn, Chong H.
    Watts, Nelson
    SENSORS, 2009, 9 (11) : 9275 - 9299
  • [46] Nanomaterial-based gas sensors: A review
    Xu, Ke
    Fu, Chuhan
    Gao, Zhijun
    Wei, Fanan
    Ying, Yu
    Xu, Chong
    Fu, Guojiang
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2018, 46 (02) : 115 - 145
  • [47] Nanomaterial-based multiplex optical sensors
    Pei, Xiaojing
    Tao, Guangyu
    Wu, Xi
    Ma, Yurou
    Li, Rongsheng
    Li, Na
    ANALYST, 2020, 145 (12) : 4111 - 4123
  • [48] Nanomaterial-based sensors and biosensors for enhanced inorganic arsenic detection: A functional perspective
    Xu, Xuechao
    Niu, Xiangheng
    Li, Xin
    Li, Zhaohui
    Du, Dan
    Lin, Yuehe
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 315
  • [49] Review on Nanomaterial-Based Melamine Detection
    Shellaiah, Muthaiah
    Sun, Kien Wen
    CHEMOSENSORS, 2019, 7 (01)
  • [50] Nanomaterial-based robust oxygen sensor
    Goswami, Kisholoy
    Sampathkumaran, Uma
    Alam, Maksudul
    Tseng, Derek
    Majumdar, Arun K.
    Kazemi, Alex A.
    PHOTONICS IN THE TRANSPORTATION INDUSTRY: AUTO TO AEROSPACE, 2007, 6758