PPFed: A Privacy-Preserving and Personalized Federated Learning Framework

被引:6
|
作者
Zhang, Guangsheng [1 ,2 ]
Liu, Bo [1 ,2 ]
Zhu, Tianqing [3 ]
Ding, Ming [4 ]
Zhou, Wanlei [3 ]
机构
[1] Univ Technol Sydney, Ctr Cyber Secur & Privacy, Ultimo, NSW 2007, Australia
[2] Univ Technol Sydney, Sch Comp Sci, Ultimo, NSW 2007, Australia
[3] City Univ Macau, Fac Data Sci, Macau, Peoples R China
[4] CSIRO, Data61, Sydney, NSW 2015, Australia
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
基金
澳大利亚研究理事会;
关键词
Federated learning; Servers; Data models; Data privacy; Training; Privacy; Internet of Things; Gradient inversion attacks; personalized federated learning; privacy preservation; MEMBERSHIP INFERENCE ATTACKS;
D O I
10.1109/JIOT.2024.3360153
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a distributed learning paradigm where a global model is trained using data samples from multiple clients but without the necessity of sharing raw data samples. However, it comes with several significant challenges in system designs, data quality, and communications. Recent research highlights a significant concern related to data privacy leakage through reserve-engineering model gradients at a malicious server. Moreover, a global model cannot provide good utility performance for individual clients when the local training data is heterogeneous in terms of quantity, quality, and distribution. Hence, personalized federated learning is highly desirable in practice to tailor the trained model for local usage. In this article, we propose privacy-preserving and personalized federated learning, a unified federated learning framework to simultaneously address privacy preservation and personalization. The intuition of our framework is to learn part of the model gradients at the server and the rest of the gradients at the local clients. To evaluate the effectiveness of the proposed framework, we conduct extensive experiments across four image classification data sets to show that our framework yields better privacy and personalization performance compared to the existing methods. We also claim that privacy preservation and personalization are essentially two facets of deep learning models, offering a unique perspective on their intrinsic interrelation.
引用
收藏
页码:19380 / 19393
页数:14
相关论文
共 50 条
  • [21] Privacy-Preserving Asynchronous Federated Learning Framework in Distributed IoT
    Yan, Xinru
    Miao, Yinbin
    Li, Xinghua
    Choo, Kim-Kwang Raymond
    Meng, Xiangdong
    Deng, Robert H. H.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13281 - 13291
  • [22] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [23] A Hierarchical Asynchronous Federated Learning Privacy-Preserving Framework for IoVs
    Zhou, Rui
    Niu, Xianhua
    Xiong, Ling
    Wang, Yangpeng
    Zhao, Yue
    Yu, Kai
    FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 99 - 113
  • [24] PEPFL:A framework for a practical and efficient privacy-preserving federated learning
    Yange Chen
    Baocang Wang
    Hang Jiang
    Pu Duan
    Yuan Ping
    Zhiyong Hong
    Digital Communications and Networks, 2024, 10 (02) : 355 - 368
  • [25] OpenVFL: A Vertical Federated Learning Framework With Stronger Privacy-Preserving
    Yang, Yunbo
    Chen, Xiang
    Pan, Yuhao
    Shen, Jiachen
    Cao, Zhenfu
    Dong, Xiaolei
    Li, Xiaoguo
    Sun, Jianfei
    Yang, Guomin
    Deng, Robert
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9670 - 9681
  • [26] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517
  • [27] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [28] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [29] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [30] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366