Data-driven cold starting of good reservoirs

被引:0
|
作者
Grigoryeva, Lyudmila [1 ,2 ]
Hamzi, Boumediene [3 ,4 ,8 ]
Kemeth, Felix P. [4 ]
Kevrekidis, Yannis [4 ]
Manjunath, G. [5 ]
Ortega, Juan-Pablo [5 ,6 ]
Steynberg, Matthys J. [7 ]
机构
[1] Univ Sankt Gallen, Fac Math & Stat, Bodanstr 6, CH-9000 St Gallen, Switzerland
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, England
[3] Caltech, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[5] Univ Pretoria, Dept Math & Appl Math, ZA-0028 Pretoria, South Africa
[6] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore, Singapore
[7] Univ Pretoria, Dept Phys, ZA-0028 Pretoria, South Africa
[8] Alan Turing Inst, London, England
关键词
Reservoir computing; Generalized synchronization; Starting map; Forecasting; Path continuation; Dynamical systems; ECHO STATE NETWORKS; FADING-MEMORY; CHAOTIC SYSTEMS; SYNCHRONIZATION; OPERATORS;
D O I
10.1016/j.physd.2024.134325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using short histories of observations from a dynamical system, a workflow for the post-training initialization of reservoir computing systems is described. This strategy is called cold-starting, and it is based on a map called the starting map, which is determined by an appropriately short history of observations that maps to a unique initial condition in the reservoir space. The time series generated by the reservoir system using that initial state can be used to run the system in autonomous mode in order to produce accurate forecasts of the time series under consideration immediately. By utilizing this map, the lengthy "washouts"that are necessary to initialize reservoir systems can be eliminated, enabling the generation of forecasts using any selection of appropriately short histories of the observations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Data-driven deconvolution
    Hesse, CH
    JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 10 (04) : 343 - 373
  • [42] The data-driven classroom
    Bondeson, SR
    Brummer, JG
    Wright, SM
    JOURNAL OF CHEMICAL EDUCATION, 2001, 78 (01) : 56 - 57
  • [43] Data-Driven Phenotyping
    Nemati, Shamim
    Orr, Jeremy
    Malhotra, Atul
    IEEE PULSE, 2014, 5 (05) : 45 - 48
  • [44] Data-driven hypotheses
    van Helden, Paul
    EMBO REPORTS, 2013, 14 (02) : 104 - 104
  • [45] The Data-driven Industry
    Kwortnik, Robert
    CORNELL HOSPITALITY QUARTERLY, 2013, 54 (01) : 4 - 4
  • [46] DATA-DRIVEN ONTOLOGIES
    Costello, James C.
    Schrider, Dan
    Gehlhausen, Jeff
    Dalkilic, Mehmet
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2009, 2009, : 15 - 26
  • [47] Data-driven Geodynamics
    Ismail-Zadeh, Alik
    JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2021, 97 (03) : 223 - 226
  • [48] Data-driven Geodynamics
    Alik Ismail-Zadeh
    Journal of the Geological Society of India, 2021, 97 : 223 - 226
  • [49] DATA-DRIVEN POWER
    Higginbotham, Stacey
    IEEE SPECTRUM, 2020, 57 (08) : 20 - 20
  • [50] Data-Driven Mergers
    de Corniere, Alexandre
    Taylor, Greg
    INFORMATION SYSTEMS RESEARCH, 2024,