Light-YOLO: A Study of a Lightweight YOLOv8n-Based Method for Underwater Fishing Net Detection

被引:1
|
作者
Chen, Nuo [1 ]
Zhu, Jin [1 ]
Zheng, Linhan [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212003, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 15期
关键词
YOLOv8; variational convolution; sparse connection; GAN; underwater fishing net vulnerability detection; lightweight;
D O I
10.3390/app14156461
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Detecting small dark targets underwater, such as fishing nets, is critical to the operation of underwater robots. Existing techniques often require more computational resources and operate under harsh underwater imaging conditions when handling such tasks. This study aims to develop a model with low computational resource consumption and high efficiency to improve the detection accuracy of fishing nets for safe and efficient underwater operations. The Light-YOLO model proposed in this paper introduces an attention mechanism based on sparse connectivity and deformable convolution optimized for complex underwater lighting and visual conditions. This novel attention mechanism enhances the detection performance by focusing on the key visual features of fishing nets, while the introduced CoTAttention and SEAM modules further improve the model's recognition accuracy of fishing nets through deeper feature interactions. The results demonstrate that the proposed Light-YOLO model achieves a precision of 89.3%, a recall of 80.7%, and an mAP@0.5 of 86.7%. Compared to other models, our model has the highest precision for its computational size and is the lightest while maintaining similar accuracy, providing an effective solution for fishing net detection and identification.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] RLE-YOLO: A Lightweight and Multiscale SAR Ship Detection Based on Improved YOLOv8
    Xu, Yifan
    Xue, Xiaorong
    Li, Chuanlu
    Zhao, Siyue
    Xu, Xingbiao
    Zeng, Caijia
    IEEE ACCESS, 2025, 13 : 46584 - 46600
  • [22] A Lightweight Tea Pest Detection Algorithm Based on Improved YOLOv8: YOLO-SEM
    Ye, Rong
    Shao, Guoqi
    Li, Tong
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 52 - 61
  • [23] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [24] An underwater crack detection method based on improved YOLOv8
    Li, Xiaofei
    Xu, Langxing
    Wei, Mengpu
    Zhang, Lixiao
    Zhang, Chen
    OCEAN ENGINEERING, 2024, 313
  • [25] MW-YOLO: Improved YOLOv8n for Lightweight Dense Vehicle Object Detection Algorithm
    Zhou, Wanzhen
    Wang, Junjie
    Song, Yufei
    Zhang, Xiaoran
    Liu, Zhiguo
    Ma, Yupeng
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 28 - 35
  • [26] RDB-YOLOv8n: Insulator defect detection based on improved lightweight YOLOv8n model
    Jiang, Yong
    Wang, Shuai
    Cao, Weifeng
    Liang, Wanyong
    Shi, Jun
    Zhou, Lintao
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [27] TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements
    Fang, Wenhui
    Chen, Weizhen
    SENSORS, 2025, 25 (02)
  • [28] A lightweight coal gangue detection method based on multispectral imaging and enhanced YOLOv8n
    Yan, Pengcheng
    Wang, Wenchang
    Li, Guodong
    Zhao, Yuting
    Wang, Jingbao
    Wen, Ziming
    MICROCHEMICAL JOURNAL, 2024, 199
  • [29] Lightweight Mulberry Fruit Detection Method Based on Improved YOLOv8n for Automated Harvesting
    Qiu, Hong
    Zhang, Qinghui
    Li, Junqiu
    Rong, Jian
    Yang, Zongpeng
    AGRONOMY-BASEL, 2024, 14 (12):
  • [30] LH-YOLO: A Lightweight and High-Precision SAR Ship Detection Model Based on the Improved YOLOv8n
    Cao, Qi
    Chen, Hang
    Wang, Shang
    Wang, Yongqiang
    Fu, Haisheng
    Chen, Zhenjiao
    Liang, Feng
    REMOTE SENSING, 2024, 16 (22)