Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials

被引:1
|
作者
Zayed, Mohra [1 ]
Wani, Shahid Ahmad [2 ]
机构
[1] King Khalid Univ, Coll Sci, Math Dept, Abha 61413, Saudi Arabia
[2] Symbiosis Int, Symbiosis Inst Technol, Pune Campus, Pune, India
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
关键词
1-parameter generalized Hermite polynomials; Appell polynomials; determinant definition; recurrence relations; differential equations;
D O I
10.3934/math.20241226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel framework for introducing generalized 3-variable 1-parameter Hermitebased Appell polynomials. These polynomials are characterized by generating function, series a factorization method, we established recurrence relations, shift operators, and various differential equations, including differential, integrodifferential, and partial differential equations. Special attention is given to exploring the specific cases of 3-variable 1-parameter generalized Hermite-based Bernoulli, Euler, and Genocchi polynomials, offering insights into their unique features and applications.
引用
收藏
页码:25145 / 25165
页数:21
相关论文
共 47 条
  • [21] Partial Derivative Equations and Identities for Hermite-Based Peters-Type Simsek Polynomials and Their Applications
    Yuluklu, Eda
    MATHEMATICS, 2024, 12 (16)
  • [22] Two variable Modified Hermite Matrix polynomials properties and its applications
    Singh, Virender
    Sharma, Archna
    Khan, Abdul Hakim
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON FRONTIERS IN INDUSTRIAL AND APPLIED MATHEMATICS (FIAM-2019), 2020, 2253
  • [23] Explicit Identities for 3-Variable Degenerate Hermite Kampe de Feriet Polynomials and Differential Equation Derived from Generating Function
    Hwang, Kyung-Won
    Seol, Young-Soo
    Ryoo, Cheon-Seoung
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 22
  • [24] New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications
    Xiang-Guo Meng
    Jian-Ming Liu
    Ji-Suo Wang
    Hong-Yi Fan
    The European Physical Journal D, 2019, 73
  • [25] New generalized binomial theorems involving two-variable Hermite polynomials via quantum optics approach and their applications
    Meng, Xiang-Guo
    Liu, Jian-Ming
    Wang, Ji-Suo
    Fan, Hong-Yi
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (02):
  • [26] A NEW CLASS OF LAGUERRE-BASED GENERALIZED HERMITE-EULER POLYNOMIALS AND ITS PROPERTIES
    Khan, N. U.
    Usman, T.
    Khan, W. A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 89 - 100
  • [27] Certain properties of 3D degenerate generalized Fubini polynomials and applications
    Riyasat, Mumtaz
    Alali, Amal S.
    Khan, Subuhi
    AFRIKA MATEMATIKA, 2024, 35 (02)
  • [28] Representation of a Lie algebra G(0,1) and three variable generalized hermite polynomials Hn(x, y, z)
    Pathan, MA
    Khan, S
    Yasmin, G
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2002, 13 (01) : 59 - 64
  • [29] Layered planar capacitor based on BaxSr1-xTiO3 with variable parameter x
    Vendik, OG
    Zubko, SP
    Karmanenko, SF
    Nikol'ski, MA
    Isakov, NN
    Serenkov, IT
    Sakharov, VI
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (01) : 331 - 335
  • [30] Lie algebra G(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {G}}(0, 1)$$\end{document} and 3-variable 2-parameter Hermite polynomials
    Ghazala Yasmin
    Abdulghani Muhyi
    Afrika Matematika, 2019, 30 (1-2) : 231 - 246