Multi-Augmentation Contrastive Learning as Multi-Objective Optimization for Graph Neural Networks

被引:0
|
作者
Li, Xu [1 ]
Chen, Yongsheng [1 ]
机构
[1] Tongji Univ, Shanghai, Peoples R China
关键词
graph neural networks; multi-objective Learning; self-supervised learning;
D O I
10.1007/978-3-031-33377-4_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently self-supervised learning is gaining popularity for Graph Neural Networks (GNN) by leveraging unlabeled data. Augmentation plays a key role in self-supervision. While there is a common set of image augmentation methods that preserve image labels in general, graph augmentation methods do not guarantee consistent graph semantics and are usually domain dependent. Existing self-supervised GNN models often handpick a small set of augmentation techniques that limit the performance of the model. In this paper, we propose a common set of graph augmentation methods to a wide range of GNN tasks, and rely on the Pareto optimality to select and balance among these possibly conflicting augmented versions, called Pareto Graph Contrastive Learning (PGCL) framework. We show that while random selection of the same set of augmentation leads to slow convergence or even divergence, PGCL converges much faster with lower error rate. Extensive experiments on multiple datasets of different domains and scales demonstrate superior or comparable performance of PGCL.
引用
收藏
页码:495 / 507
页数:13
相关论文
共 50 条
  • [21] Multi-Objective Optimization in Learning to Rank
    Dai, Na
    Shokouhi, Milad
    Davison, Brian D.
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 1241 - 1242
  • [22] Multi-objective optimization by learning automata
    H. L. Liao
    Q. H. Wu
    Journal of Global Optimization, 2013, 55 : 459 - 487
  • [23] Alternative Optimization of Multi-objective Reservoirs with Fuzzy Optimum Neural Networks
    Guo, Yu
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [24] A Multi-Objective Particle Swarm Optimization Pruning on Photonic Neural Networks
    Su, Ye
    Chen, Zhuang
    Xu, Fang
    Ye, Yichen
    Jiang, Xiao
    Liu, Weichen
    Xie, Yiyuan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2025, 43 (05) : 2213 - 2225
  • [25] A Multi-objective Optimization Model for Redundancy Reduction in Convolutional Neural Networks
    Ali Boufssasse
    El houssaine Hssayni
    Nour-Eddine Joudar
    Mohamed Ettaouil
    Neural Processing Letters, 2023, 55 : 9721 - 9741
  • [26] A Multi-objective Optimization Model for Redundancy Reduction in Convolutional Neural Networks
    Boufssasse, Ali
    Hssayni, El Houssaine
    Joudar, Nour-Eddine
    Ettaouil, Mohamed
    NEURAL PROCESSING LETTERS, 2023, 55 (07) : 9721 - 9741
  • [27] Multi-Objective Optimization of Temperature Distributions using Artificial Neural Networks
    Song, Zhihang
    Murray, Bruce T.
    Sammakia, Bahgat
    Lu, Shuxia
    2012 13TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2012, : 1209 - 1218
  • [28] Multi-objective Precision Optimization of Deep Neural Networks for Edge Devices
    Nhut-Minh Ho
    Vaddi, Ramesh
    Wong, Weng-Fai
    2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2019, : 1100 - 1105
  • [29] Attributed network community detection based on graph contrastive learning and multi-objective evolutionary algorithm
    Liang, Yao
    Shu, Jian
    Liu, Linlan
    NEUROCOMPUTING, 2025, 636
  • [30] A graph-based algorithm for the multi-objective optimization of gene regulatory networks
    Nghe, Philippe
    Mulder, Bela M.
    Tans, Sander J.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (02) : 784 - 793