A remark on the boundedness of the Hardy-Littlewood maximal operator on Orlicz-Lorentz spaces

被引:0
|
作者
Hao, Zhiwei [1 ]
Wang, Lin [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
关键词
Hardy-Littlewood maximal operator; Orlicz-Lorentz space; Young function;
D O I
10.1007/s00013-024-02028-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an alternative proof of the main result in Hatano et al. (Tokyo J Math 46(1):125-160, 2023) that the Hardy-Littlewood maximal operator is bounded on the Orlicz-Lorentz space L Phi,q(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\Phi ,q}({\mathbb {R}}<^>n)$$\end{document} for a Young function Phi is an element of del 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \nabla _2$$\end{document} and 0<q<1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1.$$\end{document}
引用
收藏
页码:423 / 430
页数:8
相关论文
共 50 条
  • [21] FRACTIONAL MAXIMAL OPERATOR AND FRACTIONAL INTEGRAL OPERATOR ON ORLICZ-LORENTZ SPACES
    Li, Hongliang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 15 - 31
  • [22] Orlicz-Lorentz Hardy martingale spaces
    Hao, Zhiwei
    Li, Libo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [23] Note on local properties of the exponents and boundedness of Hardy-Littlewood maximal operator in variable Lebesgue spaces
    Kopaliani, Tengiz
    Zviadadze, Shalva
    HOKKAIDO MATHEMATICAL JOURNAL, 2020, 49 (02) : 215 - 226
  • [24] Boundedness of the Hardy-Littlewood Maximal Operator Along the Orbits of Contractive Similitudes
    Aimar, Hugo
    Carena, Marilina
    Iaffei, Bibiana
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (04) : 1832 - 1850
  • [25] A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces
    Kita, H
    ACTA MATHEMATICA HUNGARICA, 2003, 98 (1-2) : 85 - 101
  • [26] THE NON-COMMUTATIVE HARDY-LITTLEWOOD MAXIMAL OPERATOR ON NON-COMMUTATIVE LORENTZ SPACES
    Bekbayev, N. T.
    Tulenov, K. S.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 106 (02): : 31 - 38
  • [27] Orlicz classes of hardy-littlewood maximal functions
    Delgado, M
    Guerra, PJ
    OSAKA JOURNAL OF MATHEMATICS, 1998, 35 (01) : 1 - 14
  • [28] A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces
    H. Kita
    Acta Mathematica Hungarica, 2003, 98 : 85 - 101
  • [29] Local Hardy-Littlewood maximal operator
    Lin, Chin-Cheng
    Stempak, Krzysztof
    MATHEMATISCHE ANNALEN, 2010, 348 (04) : 797 - 813
  • [30] LOCAL HARDY-LITTLEWOOD MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES
    Gogatishvili, A.
    Danelia, A.
    Kopaliani, T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02) : 229 - 244