A remark on the boundedness of the Hardy-Littlewood maximal operator on Orlicz-Lorentz spaces

被引:0
|
作者
Hao, Zhiwei [1 ]
Wang, Lin [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
关键词
Hardy-Littlewood maximal operator; Orlicz-Lorentz space; Young function;
D O I
10.1007/s00013-024-02028-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an alternative proof of the main result in Hatano et al. (Tokyo J Math 46(1):125-160, 2023) that the Hardy-Littlewood maximal operator is bounded on the Orlicz-Lorentz space L Phi,q(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\Phi ,q}({\mathbb {R}}<^>n)$$\end{document} for a Young function Phi is an element of del 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \nabla _2$$\end{document} and 0<q<1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1.$$\end{document}
引用
收藏
页码:423 / 430
页数:8
相关论文
共 50 条