Low regularity global well-posedness of axisymmetric MHD equations with vertical dissipation and magnetic diffusion

被引:0
|
作者
Abidi, Hammadi [1 ]
Gui, Guilong [2 ]
Ke, Xueli [2 ,3 ]
机构
[1] Univ Tunis EI Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric MHD equations; Global well-posedness; Lorentz spaces; AXIALLY-SYMMETRIC FLOWS; NAVIER-STOKES EQUATIONS; INCOMPRESSIBLE MAGNETOHYDRODYNAMICS; SYSTEM; FLUIDS;
D O I
10.1016/j.jde.2024.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consideration in this paper is the global well-posedness for the 3D axisymmetric MHD equations with only vertical dissipation and vertical magnetic diffusion. The existence of unique low-regularity global solutions of the system with initial data in Lorentz spaces is established by using higher-order energy estimates and real interpolation method. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:635 / 663
页数:29
相关论文
共 50 条