SIGAN: A Multi-Scale Generative Adversarial Network for Underwater Sonar Image Super-Resolution

被引:1
|
作者
Peng, Chengyang [1 ]
Jin, Shaohua [1 ]
Bian, Gang [1 ]
Cui, Yang [1 ]
机构
[1] Dalian Naval Acad, Dept Oceanog & Hydrog, Dalian 116018, Peoples R China
关键词
image super-resolution; generative adversarial network; underwater sonar images; underwater target detection;
D O I
10.3390/jmse12071057
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Super-resolution (SR) is a technique that restores image details based on existing information, enhancing the resolution of images to prevent quality degradation. Despite significant achievements in deep-learning-based SR models, their application in underwater sonar scenarios is limited due to the lack of underwater sonar datasets and the difficulty in recovering texture details. To address these challenges, we propose a multi-scale generative adversarial network (SIGAN) for super-resolution reconstruction of underwater sonar images. The generator is built on a residual dense network (RDN), which extracts rich local features through densely connected convolutional layers. Additionally, a Convolutional Block Attention Module (CBAM) is incorporated to capture detailed texture information by focusing on different scales and channels. The discriminator employs a multi-scale discriminative structure, enhancing the detail perception of both generated and high-resolution (HR) images. Considering the increased noise in super-resolved sonar images, our loss function emphasizes the PSNR metric and incorporates the L2 loss function to improve the quality of the output images. Meanwhile, we constructed a dataset for side-scan sonar experiments (DNASI-I). We compared our method with the current state-of-the-art super-resolution image reconstruction methods on the public dataset KLSG-II and our self-built dataset DNASI-I. The experimental results show that at a scale factor of 4, the average PSNR value of our method was 3.5 higher than that of other methods, and the accuracy of target detection using the super-resolution reconstructed images can be improved to 91.4%. Through subjective qualitative comparison and objective quantitative analysis, we demonstrated the effectiveness and superiority of the proposed SIGAN in the super-resolution reconstruction of side-scan sonar images.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Attention augmented multi-scale network for single image super-resolution
    Xiong, Chengyi
    Shi, Xiaodi
    Gao, Zhirong
    Wang, Ge
    APPLIED INTELLIGENCE, 2021, 51 (02) : 935 - 951
  • [42] LMSN:a lightweight multi-scale network for single image super-resolution
    Yiye Zou
    Xiaomin Yang
    Marcelo Keese Albertini
    Farhan Hussain
    Multimedia Systems, 2021, 27 : 845 - 856
  • [43] MDCN: Multi-Scale Dense Cross Network for Image Super-Resolution
    Li, Juncheng
    Fang, Faming
    Li, Jiaqian
    Mei, Kangfu
    Zhang, Guixu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) : 2547 - 2561
  • [44] An image super-resolution network based on multi-scale convolution fusion
    Yang, Xin
    Zhu, Yitian
    Guo, Yingqing
    Zhou, Dake
    VISUAL COMPUTER, 2022, 38 (12): : 4307 - 4317
  • [45] LMSN:a lightweight multi-scale network for single image super-resolution
    Zou, Yiye
    Yang, Xiaomin
    Albertini, Marcelo Keese
    Hussain, Farhan
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 845 - 856
  • [46] Feedback Multi-scale Residual Dense Network for image super-resolution
    Lin, Zhengchun
    Li, Siyuan
    Jiang, Yunzhi
    Wang, Jing
    Luo, Qingxing
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 107
  • [47] Single Image Super-Resolution Using Asynchronous Multi-Scale Network
    Ji, Jiahuan
    Zhong, Baojiang
    Ma, Kai-Kuang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1823 - 1827
  • [48] Feedback Multi-scale Residual Dense Network for image super-resolution
    Lin, Zhengchun
    Li, Siyuan
    Jiang, Yunzhi
    Wang, Jing
    Luo, Qingxing
    Signal Processing: Image Communication, 2022, 107
  • [49] Lightweight multi-scale distillation attention network for image super-resolution
    Tang, Yinggan
    Hu, Quanwei
    Bu, Chunning
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [50] Multi-scale information distillation network for efficient image super-resolution
    Hu, Yanting
    Huang, Yuanfei
    Zhang, Kaibing
    KNOWLEDGE-BASED SYSTEMS, 2023, 275