Anomaly Detection via Graph Attention Networks-Augmented Mask Autoregressive Flow for Multivariate Time Series

被引:0
|
作者
Liu, Hao [1 ,2 ]
Luo, Wang [1 ,2 ]
Han, Lixin [2 ]
Gao, Peng [3 ]
Yang, Weiyong [3 ]
Han, Guangjie [4 ]
机构
[1] NARI Grp Co Ltd, State Grid Elect Power Res Inst Co Ltd, Dept Data & Artificial Intelligence, Nanjing 211000, Peoples R China
[2] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Peoples R China
[3] NARI Grp Co Ltd, State Grid Elect Power Res Inst Co Ltd, Informat Secur Res Ctr, Nanjing 211000, Peoples R China
[4] Hohai Univ, Changzhou Key Lab Internet Things Technol Intellig, Changzhou 213022, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
关键词
Anomaly detection; graph attention network (GAT); mask autoregressive flow; multivariate time series (MTS);
D O I
10.1109/JIOT.2024.3362398
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection in multivariate time series (MTS) has been applied to various areas. Recent studies for detecting anomalies in high-dimensional data have yielded promising results. However, these methods are incapable of explicitly dealing with the complex contextual information that exists between features. In this article, we present a novel unsupervised anomaly detection framework for MTS. We model the complex relationships of MTS using graph attention networks from the perspectives of time and features, respectively. Furthermore, our framework employs masked autoregressive flow for density estimation, which is then treated as an anomaly score, to identify anomalies. Extensive experiments show that our model outperforms baseline approaches in terms of accuracy on three publicly available data sets and accurately captures temporal and interfeature relationships.
引用
收藏
页码:19368 / 19379
页数:12
相关论文
共 50 条
  • [31] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [32] Gmad: multivariate time series anomaly detection based on graph matching learning
    Kong, Jun
    Wang, Kang
    Jiang, Min
    Tao, Xuefeng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [33] Learning Sparse Latent Graph Representations for Anomaly Detection in Multivariate Time Series
    Han, Siho
    Woo, Simon S.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2977 - 2986
  • [34] Graph Neural Network-Based Anomaly Detection in Multivariate Time Series
    Deng, Ailin
    Hooi, Bryan
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4027 - 4035
  • [35] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [37] Multivariate Time Series Anomaly Detection Based on Multiple Spatiotemporal Graph Convolution
    He, Shiming
    Guo, Qingqing
    Li, Genxin
    Xie, Kun
    Sharma, Pradip Kumar
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [38] Graph spatiotemporal process for multivariate time series anomaly detection with missing values
    Zheng, Yu
    Koh, Huan Yee
    Jin, Ming
    Chi, Lianhua
    Wang, Haishuai
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    Pan, Shirui
    Xiang, Wei
    INFORMATION FUSION, 2024, 106
  • [39] GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
    Guan, Siwei
    Zhao, Binjie
    Dong, Zhekang
    Gao, Mingyu
    He, Zhiwei
    ENTROPY, 2022, 24 (06)
  • [40] A detection based on particle filtering and multivariate time-series anomaly detection via graph attention network for automatic voltage control attack in smart grid
    Lu, Zhigang
    Zhao, Guangxuan
    Kong, Xiangxing
    Chen, Jianhua
    Guo, Xiaoqiang
    Zhang, Jiangfeng
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40