Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform

被引:1
|
作者
Lu, Rongguang [1 ,2 ]
Deng, Liping [1 ]
Lian, Yun [1 ]
Ke, Xin [3 ]
Yang, Lixia [4 ]
Xi, Kun
Ong, Alan Ann Lerk [5 ]
Chen, Yanyu [1 ]
Zhou, Hanting [1 ]
Meng, Zhenyu [5 ]
Lin, Ruiyu [1 ]
Fan, Shijian [1 ]
Liu, Yining [1 ]
Toh, Desiree-Faye Kaixin [5 ]
Zhan, Xuan [1 ]
Krishna, Manchugondanahalli S. [5 ]
Patil, Kiran M. [5 ]
Lu, Yunpeng [5 ]
Liu, Zheng [1 ]
Zhu, Lizhe [1 ]
Wang, Hongwei [3 ]
Li, Guobao [2 ]
Chen, Gang [1 ,6 ,7 ]
机构
[1] Chinese Univ Hong Kong, Sch Med, Shenzhen CUHK Shenzhen, Shenzhen 518172, Guangdong, Peoples R China
[2] Shenzhen Third Peoples Hosp, Natl Clin Res Ctr Infect Dis, Shenzhen Clin Res Ctr TB, Shenzhen 518112, Guangdong, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu 610054, Sichuan, Peoples R China
[5] Nanyang Technol Univ, Div Chem & Biol Chem, Sch Phys & Math Sci, Singapore 637371, Singapore
[6] Chinese Univ Hong Kong, Shenzhen Key Lab Innovat Drug Synth, Shenzhen CUHK Shenzhen, Shenzhen 518172, Guangdong, Peoples R China
[7] Chinese Univ Hong Kong, Shenzhen CUHK Shenzhen Futian Biomed Innovat R&D C, Shenzhen 518031, Guangdong, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 09期
基金
中国博士后科学基金;
关键词
SEQUENCE-SELECTIVE RECOGNITION; TRIPLE-HELICAL RECOGNITION; MESSENGER-RNA; TARGETING RNA; DNA; TAU; LOOP; OLIGONUCLEOTIDES; MUTATIONS; DEMENTIA;
D O I
10.1016/j.xcrp.2024.102150
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
RNA secondary structures comprise double-stranded (ds) and single-stranded (ss) regions. Antisense peptide nucleic acids (asPNAs) enable the targeting of ssRNAs and weakly formed dsRNAs. Nucleobase-modified dsRNA-binding PNAs (dbPNAs) allow for dsRNA targeting. A programmable RNA-structure-specific targeting strategy is needed for the simultaneous recognition of dsRNAs and ssRNAs. Here, we report on combining dbPNAs and asPNAs (designated as daPNAs) for the targeting of dsRNA-ssRNA junctions. Our data suggest that combining traditional asPNA (with a 4-letter code: T, C, A, and G) and dbPNA (with a 4-letter code: T or s(2)U, L, Q, and E) scaffolds facilitates RNA-structure-specific tight binding (nM to mu M). We further apply our daPNAs in substrate-specific inhibition of Dicer acting on precursor miRNA (pre-miR)-198 in a cell-free assay and regulating ribosomal frameshifting induced by model hairpins in both cell-free and cell culture assays. daPNAs would be a useful platform for developing chemical probes and therapeutic ligands targeting RNA.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Synthesis of Nucleic Acid Mimics and Their Application in Nucleic Acid-based Medicine
    Kitamura, Yoshiaki
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2016, 136 (11): : 1491 - 1499
  • [32] Functional Nucleic Acid Enzymes: Nucleic Acid-Based Catalytic Factories
    Yang, Min
    Xie, Yushi
    Zhu, Longjiao
    Li, Xiangyang
    Xu, Wentao
    ACS CATALYSIS, 2024, 14 (21): : 16392 - 16422
  • [33] Stoichiometric analysis of protein- and nucleic acid-based structures in the cell nucleus
    Bazett-Jones, DP
    Hendzel, MJ
    Kruhlak, MJ
    MICRON, 1999, 30 (02) : 151 - 157
  • [34] Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems
    Lui, Clarissa
    Cady, Nathaniel C.
    Batt, Carl A.
    SENSORS, 2009, 9 (05) : 3713 - 3744
  • [35] Locked nucleic acid (LNA) recognition of RNA:: NMR solution structures of LNA:RNA hybrids
    Petersen, M
    Bondensgaard, K
    Wengel, J
    Jacobsen, JP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (21) : 5974 - 5982
  • [36] Peptide nucleic acid-based in situ hybridization assay for detection of parvovirus B19 nucleic acids
    Bonvicini, Francesca
    Filippone, Claudia
    Manaresi, Elisabetta
    Gentilomi, Giovanna Angela
    Zerbini, Marialuisa
    Musiani, Monica
    Gallinella, Giorgio
    CLINICAL CHEMISTRY, 2006, 52 (06) : 973 - 978
  • [37] Analysis of microRNA expression in glial tumors by using a peptide nucleic acid-based microarray
    Kim, Dae Choel
    Kim, Young Zoon
    PRECISION AND FUTURE MEDICINE, 2019, 3 (03): : 124 - 134
  • [38] Peptide nucleic acids: Expanding the scope of nucleic acid recognition
    Corey, DR
    TRENDS IN BIOTECHNOLOGY, 1997, 15 (06) : 224 - 229
  • [39] CARB 97-Peptide nucleic acid analogs for sequence selective RNA recognition
    Muse, Oluwatoyosi
    Li, Ming
    Rozners, Eriks
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [40] Development of peptide nucleic acid-based bead array technology for Bacillus cereus detection
    Noppakuadrittidej, Prae
    Charlermroj, Ratthaphol
    Makornwattana, Manlika
    Kaew-amdee, Sudtida
    Waditee-Sirisattha, Rungaroon
    Vilaivan, Tirayut
    Praneenararat, Thanit
    Karoonuthaisiri, Nitsara
    SCIENTIFIC REPORTS, 2023, 13 (01)