Recognition of RNA secondary structures with a programmable peptide nucleic acid-based platform

被引:1
|
作者
Lu, Rongguang [1 ,2 ]
Deng, Liping [1 ]
Lian, Yun [1 ]
Ke, Xin [3 ]
Yang, Lixia [4 ]
Xi, Kun
Ong, Alan Ann Lerk [5 ]
Chen, Yanyu [1 ]
Zhou, Hanting [1 ]
Meng, Zhenyu [5 ]
Lin, Ruiyu [1 ]
Fan, Shijian [1 ]
Liu, Yining [1 ]
Toh, Desiree-Faye Kaixin [5 ]
Zhan, Xuan [1 ]
Krishna, Manchugondanahalli S. [5 ]
Patil, Kiran M. [5 ]
Lu, Yunpeng [5 ]
Liu, Zheng [1 ]
Zhu, Lizhe [1 ]
Wang, Hongwei [3 ]
Li, Guobao [2 ]
Chen, Gang [1 ,6 ,7 ]
机构
[1] Chinese Univ Hong Kong, Sch Med, Shenzhen CUHK Shenzhen, Shenzhen 518172, Guangdong, Peoples R China
[2] Shenzhen Third Peoples Hosp, Natl Clin Res Ctr Infect Dis, Shenzhen Clin Res Ctr TB, Shenzhen 518112, Guangdong, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu 610054, Sichuan, Peoples R China
[5] Nanyang Technol Univ, Div Chem & Biol Chem, Sch Phys & Math Sci, Singapore 637371, Singapore
[6] Chinese Univ Hong Kong, Shenzhen Key Lab Innovat Drug Synth, Shenzhen CUHK Shenzhen, Shenzhen 518172, Guangdong, Peoples R China
[7] Chinese Univ Hong Kong, Shenzhen CUHK Shenzhen Futian Biomed Innovat R&D C, Shenzhen 518031, Guangdong, Peoples R China
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 09期
基金
中国博士后科学基金;
关键词
SEQUENCE-SELECTIVE RECOGNITION; TRIPLE-HELICAL RECOGNITION; MESSENGER-RNA; TARGETING RNA; DNA; TAU; LOOP; OLIGONUCLEOTIDES; MUTATIONS; DEMENTIA;
D O I
10.1016/j.xcrp.2024.102150
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
RNA secondary structures comprise double-stranded (ds) and single-stranded (ss) regions. Antisense peptide nucleic acids (asPNAs) enable the targeting of ssRNAs and weakly formed dsRNAs. Nucleobase-modified dsRNA-binding PNAs (dbPNAs) allow for dsRNA targeting. A programmable RNA-structure-specific targeting strategy is needed for the simultaneous recognition of dsRNAs and ssRNAs. Here, we report on combining dbPNAs and asPNAs (designated as daPNAs) for the targeting of dsRNA-ssRNA junctions. Our data suggest that combining traditional asPNA (with a 4-letter code: T, C, A, and G) and dbPNA (with a 4-letter code: T or s(2)U, L, Q, and E) scaffolds facilitates RNA-structure-specific tight binding (nM to mu M). We further apply our daPNAs in substrate-specific inhibition of Dicer acting on precursor miRNA (pre-miR)-198 in a cell-free assay and regulating ribosomal frameshifting induced by model hairpins in both cell-free and cell culture assays. daPNAs would be a useful platform for developing chemical probes and therapeutic ligands targeting RNA.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis
    D'Agata, Roberta
    Giuffrida, Maria Chiara
    Spoto, Giuseppe
    MOLECULES, 2017, 22 (11):
  • [2] The α-Helical Peptide Nucleic Acid Concept: Merger of Peptide Secondary Structure and Codified Nucleic Acid Recognition
    Huang, Yumei
    Dey, Subhakar
    Zhang, Xiao
    Sönnichsen, Frank
    Garner, Philip
    Journal of the American Chemical Society, 2004, 126 (14): : 4626 - 4640
  • [3] The α-helical peptide nucleic acid concept:: merger of peptide secondary structure and codified nucleic acid recognition
    Huang, YM
    Dey, S
    Zhang, X
    Sönnichsen, F
    Garner, P
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (14) : 4626 - 4640
  • [4] Shorter Peptide Nucleic Acid Probes Improve Affibody-Mediated Peptide Nucleic Acid-Based Pretargeting
    Westerlund, Kristina
    Oroujeni, Maryam
    Gestin, Maxime
    Clinton, Jacob
    Rosly, Alia Hani
    Tano, Hanna
    Vorobyeva, Anzhelika
    Orlova, Anna
    Karlstrom, Amelie Eriksson
    Tolmachev, Vladimir
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2024, 7 (05) : 1595 - 1611
  • [5] Ribozyme and peptide-nucleic acid-based gene therapy
    Phylactou, LA
    ADVANCED DRUG DELIVERY REVIEWS, 2000, 44 (2-3) : 97 - 108
  • [6] Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy
    Kim, Haejoo
    Kwak, Minseok
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [7] Nucleic acid-based nanoengineering: novel structures for biomedical applications
    Li, Hanying
    LaBean, Thomas H.
    Leong, Kam W.
    INTERFACE FOCUS, 2011, 1 (05) : 702 - 724
  • [8] Enhancing Peptide Nucleic Acid-Nanomaterial Interaction and Performance Improvement of Peptide Nucleic Acid-Based Nucleic Acid Detection by Using Electrostatic Effects
    Faikhruea, Kriangsak
    Choopara, Ilada
    Somboonna, Naraporn
    Assavalapsakul, Wanchai
    Kim, Byeang Hyean
    Vilaivan, Tirayut
    ACS APPLIED BIO MATERIALS, 2022, 5 (02) : 789 - 800
  • [9] Rapid, Cost-Effective Peptide/Nucleic Acid-Based Platform for Therapeutic Antibody Monitoring in Clinical Samples
    Mocenigo, Marco
    Porchetta, Alessandro
    Rossetti, Marianna
    Brass, Erik
    Tonini, Lucia
    Puzzi, Luca
    Tagliabue, Elda
    Triulzi, Tiziana
    Marini, Bruna
    Ricci, Francesco
    Ippodrino, Rudy
    ACS SENSORS, 2020, 5 (10) : 3109 - 3115
  • [10] Design of triplex-forming peptide nucleic acid-based fluorescent probes for forced intercalation sensing of double-stranded RNA structures
    Sato, Yusuke
    Sato, Takaya
    Lee, En Ting Tabitha
    Chiba, Toshiki
    Tanabe, Takaaki
    Yoshino, Yukina
    Nishizawa, Seiichi
    ANALYTICAL SCIENCES, 2025,