Transverse aortic constriction multi-omics analysis uncovers pathophysiological cardiac molecular mechanisms

被引:0
|
作者
Gjerga, Enio [1 ,2 ,3 ]
Dewenter, Matthias [3 ,4 ,5 ]
Britto-Borges, Thiago [1 ,2 ,3 ]
Grosso, Johannes [3 ,4 ]
Stein, Frank [6 ,7 ]
Eschenbach, Jessica [1 ,2 ,3 ]
Rettel, Mandy [6 ]
Backs, Johannes [3 ,4 ,5 ,8 ]
Dieterich, Christoph [1 ,2 ,3 ]
机构
[1] Univ Hosp Heidelberg, Klaus Tschira Inst Integrat Computat Cardiol, Sect Bioinformat & Syst Cardiol, INF 669, D-69120 Heidelberg, Germany
[2] Univ Hosp Heidelberg, Dept Internal Med 3, Cardiol Angiol & Pneumol, INF 669, D-69120 Heidelberg, Germany
[3] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Inst Expt Cardiol, Med Fac Heidelberg, INF 669, D-69120 Heidelberg, Germany
[5] Heidelberg Univ Hosp, Internal Med 8, INF 669, D-69120 Heidelberg, Germany
[6] European Mol Biol Lab, Meyerhofstr 1, D-69117 Heidelberg, Germany
[7] European Mol Biol Lab, Prote Core Facil, Meyerhofstr 1, D-69117 Heidelberg, Germany
[8] Heidelberg Univ, Helmholtz Inst Translat Angiocardiosci HI TAC, MDC, D-69120 Heidelberg, Germany
关键词
PROTEOME; PACKAGE;
D O I
10.1093/database/baae060
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Time-course multi-omics data of a murine model of progressive heart failure (HF) induced by transverse aortic constriction (TAC) provide insights into the molecular mechanisms that are causatively involved in contractile failure and structural cardiac remodelling. We employ Illumina-based transcriptomics, Nanopore sequencing and mass spectrometry-based proteomics on samples from the left ventricle (LV) and right ventricle (RV, RNA only) of the heart at 1, 7, 21 and 56 days following TAC and Sham surgery. Here, we present Transverse Aortic COnstriction Multi-omics Analysis (TACOMA), as an interactive web application that integrates and visualizes transcriptomics and proteomics data collected in a TAC time-course experiment. TACOMA enables users to visualize the expression profile of known and novel genes and protein products thereof. Importantly, we capture alternative splicing events by assessing differential transcript and exon usage as well. Co-expression-based clustering algorithms and functional enrichment analysis revealed overrepresented annotations of biological processes and molecular functions at the protein and gene levels. To enhance data integration, TACOMA synchronizes transcriptomics and proteomics profiles, enabling cross-omics comparisons. With TACOMA (https://shiny.dieterichlab.org/app/tacoma), we offer a rich web-based resource to uncover molecular events and biological processes implicated in contractile failure and cardiac hypertrophy. For example, we highlight: (i) changes in metabolic genes and proteins in the time course of hypertrophic growth and contractile impairment; (ii) identification of RNA splicing changes in the expression of Tpm2 isoforms between RV and LV; and (iii) novel transcripts and genes likely contributing to the pathogenesis of HF. We plan to extend these data with additional environmental and genetic models of HF to decipher common and distinct molecular changes in heart diseases of different aetiologies.Database URL: https://shiny.dieterichlab.org/app/tacoma
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multi-omics analysis of meningioma samples
    Bocharov, Konstantin
    Sorokin, Anatoly
    Shurkhay, Vsevolod
    Popov, Igor
    Evgeny, Zhvansky
    Potapov, Alexander
    Nikolaev, Evgeny
    JOURNAL OF BIOTECHNOLOGY, 2018, 280 : S42 - S42
  • [42] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [43] Multi-omics analysis of molecular landscape and heterogeneity in fetal adenocarcinoma of the lung
    Guo, Wei
    Sun, Li
    Chen, Xiaoxi
    Zhou, Haitao
    Yan, Shi
    Zhao, Gang
    Tang, Haimeng
    Bao, Hua
    Wu, Xue
    Shao, Yang
    Lin, Lin
    CANCER RESEARCH, 2023, 83 (07)
  • [44] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [45] Editorial: Characterization of esophageal cancer molecular signatures and mechanisms using multi-omics analyses
    Xu, Yuanji
    Huang, Wei
    Tamadon, Amin
    Lin, Yao
    Ye, Guodong
    FRONTIERS IN GENETICS, 2023, 14
  • [46] A Multi-Omics Informatics Approach for Identifying Molecular Mechanisms and Biomarkers in Clinical Patients with Endometriosis
    Akter, Sadia
    Bromfield, John
    Pelch, Katherine
    Meng, Angela
    Wilshire, Gil
    Crowder, Sarah
    Schust, Danny J.
    Barrier, Bret
    Davis, J. Wade
    Joshi, Trupti
    Nagel, Susan C.
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 2221 - 2223
  • [47] Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction
    Larsen, Peter E.
    Sreedasyam, Avinash
    Trivedi, Geetika
    Desai, Shalaka
    Dai, Yang
    Cseke, Leland J.
    Collart, Frank R.
    FRONTIERS IN PLANT SCIENCE, 2016, 6
  • [48] Exploring molecular mechanisms of postoperative delirium through multi-omics strategies in plasma exosomes
    Yan, Fuhui
    Chen, Bowang
    Ma, Zhen
    Chen, Qirong
    Jin, Zhi
    Wang, Yujie
    Qu, Feng
    Meng, Qiang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [49] Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS
    Trimbour, Remi
    Deutschmann, Ina Maria
    Cantini, Laura
    BIOINFORMATICS, 2024, 40 (05)
  • [50] Systems biology of dry eye: Unraveling molecular mechanisms through multi-omics integration
    Zhang, Zhirui
    Liu, Changxing
    Zhao, Lingying
    Yao, Jing
    OCULAR SURFACE, 2025, 36 : 25 - 40