Transverse aortic constriction multi-omics analysis uncovers pathophysiological cardiac molecular mechanisms

被引:0
|
作者
Gjerga, Enio [1 ,2 ,3 ]
Dewenter, Matthias [3 ,4 ,5 ]
Britto-Borges, Thiago [1 ,2 ,3 ]
Grosso, Johannes [3 ,4 ]
Stein, Frank [6 ,7 ]
Eschenbach, Jessica [1 ,2 ,3 ]
Rettel, Mandy [6 ]
Backs, Johannes [3 ,4 ,5 ,8 ]
Dieterich, Christoph [1 ,2 ,3 ]
机构
[1] Univ Hosp Heidelberg, Klaus Tschira Inst Integrat Computat Cardiol, Sect Bioinformat & Syst Cardiol, INF 669, D-69120 Heidelberg, Germany
[2] Univ Hosp Heidelberg, Dept Internal Med 3, Cardiol Angiol & Pneumol, INF 669, D-69120 Heidelberg, Germany
[3] German Ctr Cardiovasc Res DZHK, Partner Site Heidelberg, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Inst Expt Cardiol, Med Fac Heidelberg, INF 669, D-69120 Heidelberg, Germany
[5] Heidelberg Univ Hosp, Internal Med 8, INF 669, D-69120 Heidelberg, Germany
[6] European Mol Biol Lab, Meyerhofstr 1, D-69117 Heidelberg, Germany
[7] European Mol Biol Lab, Prote Core Facil, Meyerhofstr 1, D-69117 Heidelberg, Germany
[8] Heidelberg Univ, Helmholtz Inst Translat Angiocardiosci HI TAC, MDC, D-69120 Heidelberg, Germany
关键词
PROTEOME; PACKAGE;
D O I
10.1093/database/baae060
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Time-course multi-omics data of a murine model of progressive heart failure (HF) induced by transverse aortic constriction (TAC) provide insights into the molecular mechanisms that are causatively involved in contractile failure and structural cardiac remodelling. We employ Illumina-based transcriptomics, Nanopore sequencing and mass spectrometry-based proteomics on samples from the left ventricle (LV) and right ventricle (RV, RNA only) of the heart at 1, 7, 21 and 56 days following TAC and Sham surgery. Here, we present Transverse Aortic COnstriction Multi-omics Analysis (TACOMA), as an interactive web application that integrates and visualizes transcriptomics and proteomics data collected in a TAC time-course experiment. TACOMA enables users to visualize the expression profile of known and novel genes and protein products thereof. Importantly, we capture alternative splicing events by assessing differential transcript and exon usage as well. Co-expression-based clustering algorithms and functional enrichment analysis revealed overrepresented annotations of biological processes and molecular functions at the protein and gene levels. To enhance data integration, TACOMA synchronizes transcriptomics and proteomics profiles, enabling cross-omics comparisons. With TACOMA (https://shiny.dieterichlab.org/app/tacoma), we offer a rich web-based resource to uncover molecular events and biological processes implicated in contractile failure and cardiac hypertrophy. For example, we highlight: (i) changes in metabolic genes and proteins in the time course of hypertrophic growth and contractile impairment; (ii) identification of RNA splicing changes in the expression of Tpm2 isoforms between RV and LV; and (iii) novel transcripts and genes likely contributing to the pathogenesis of HF. We plan to extend these data with additional environmental and genetic models of HF to decipher common and distinct molecular changes in heart diseases of different aetiologies.Database URL: https://shiny.dieterichlab.org/app/tacoma
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multi-omics analysis to explore the molecular mechanisms related to keloid
    Xu, Hailin
    Li, Keai
    Liang, Xiaofeng
    Wang, Zhiyong
    Yang, Bin
    BURNS, 2025, 51 (03)
  • [2] Multi-Omics Data Analysis Uncovers Molecular Networks and Gene Regulators for Metabolic Biomarkers
    Jung, Su Yon
    BIOMOLECULES, 2021, 11 (03) : 1 - 13
  • [3] Exploring the molecular mechanisms network of breast cancer by multi-omics analysis
    Jiang, Wei
    Zhang, Yanjun
    Wang, Qiuqiong
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2025, 21 (01) : 129 - 137
  • [4] Elucidation of molecular mechanisms of pediatric cancers using multi-omics analysis
    Takita, Junko
    CANCER SCIENCE, 2024, 115 : 1481 - 1481
  • [5] Multi-Omics Integrative Analysis Uncovers Molecular Subtypes and mRNAs as Therapeutic Targets for Liver Cancer
    Shen, Yi
    Xiong, Wei
    Gu, Qi
    Zhang, Qin
    Yue, Jia
    Liu, Changsong
    Wang, Duan
    FRONTIERS IN MEDICINE, 2021, 8
  • [6] From Omics to Multi-Omics Approaches for In-Depth Analysis of the Molecular Mechanisms of Prostate Cancer
    Nevedomskaya, Ekaterina
    Haendler, Bernard
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (11)
  • [7] Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease
    Verhagen, Judith M. A.
    Burger, Joyce
    Bekkers, Jos A.
    den Dekker, Alexander T.
    von der Thuesen, Jan H.
    Zajec, Marina
    Brueggenwirth, Hennie T.
    van der Sterre, Marianne L. T.
    van den Born, Myrthe
    Luider, Theo M.
    van IJcken, Wilfred F. J.
    Wessels, Marja W.
    Essers, Jeroen
    Roos-Hesselink, Jolien W.
    van der Pluijm, Ingrid
    van de Laar, Ingrid M. B. H.
    Brosens, Erwin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
  • [8] Multi-Omics Approaches to Study Molecular Mechanisms in Cannabis sativa
    Sirangelo, Tiziana M.
    Ludlow, Richard A.
    Spadafora, Natasha D.
    PLANTS-BASEL, 2022, 11 (16):
  • [9] Utilizing Multi-Omics Analysis to Elucidate the Molecular Mechanisms of Oat Responses to Drought Stress
    Chen, Xiaojing
    Liu, Jinghui
    Zhao, Baoping
    Mi, Junzhen
    Xu, Zhongshan
    PLANTS-BASEL, 2025, 14 (05):
  • [10] Multi-Omics Analysis Revealed the Molecular Mechanisms Affecting Average Daily Gain in Cattle
    Gu, Mingjuan
    Jiang, Hongyu
    Ma, Fengying
    Li, Shuai
    Guo, Yaqiang
    Zhu, Lin
    Shi, Caixia
    Na, Risu
    Wang, Yu
    Zhang, Wenguang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)