Effects of coarse aggregates on 3D printability and mechanical properties of ultra high performance fiber reinforced concrete

被引:0
|
作者
Fernand, Muhirwa [1 ]
Li, Yaqi [1 ]
Qian, Qiwei [1 ]
Chi, Yin [1 ]
Yang, Zhenjun [1 ]
机构
[1] Wuhan Univ, Sch Civil Engn, Hubei Key Lab Geotech & Struct Safety, Wuhan 430072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
UHPFRC; Coarse aggregates; 3D printing; Mechanical properties; Micro X-ray CT; HOMOGENIZATION;
D O I
10.1016/j.jobe.2024.110516
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D printing of ultra high performance fiber reinforced concrete (UHPFRC) suffers from high shrinkage and poor interlayer properties. To mitigate these problems, this study develops new mixtures of UHPFRC materials containing coarse aggregates (CA), and critically examines their suitability for 3D printing (3DP). Totally 90 mould-cast and 3DP cylinder and beam specimens with different CA sizes (5-15 mm) and CA-binder ratios (0.3-0.5) were tested under compression and bending in three directions. The internal distribution and volume fractions of steel fibers and pores and the crack trajectories were characterized and analysed by micro X-ray CT scanned 3D images with 37 mu m voxel resolution. The results show that adding more and bigger CAs into UHPFRC reduced the flowability but enhanced the buildability with desired extrudability achieved by adjusting 3D printing velocity. Although the compressive strength of the 3DP cylinders was 15-42 % lower than that of the mould-cast ones due to higher porosities, over 100 MPa strength was still achieved for all the 3DP cylinders with less than 10 % anisotropy. The CT images did not show evident interlayers and interlayer delamination under compression, indicating the new 3DP mixtures and printing parameters may have highly promoted cement hydration. The flexural strength of 3DP beams was 3-34 % higher than that of the cast ones, because most fibres were oriented in the printing or beam axis direction as represented by overall orientation indices calculated from CT images, thereby providing significant crack-bridging effects. The developed new mixtures are therefore well suited for 3D printing, particularly for fabrication of structural members with preferred fibre orientation, such as beams, slabs and shells.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Influence of Specimen Size and Fiber Content on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete
    Kazemi, Sadegh
    Lubell, Adam S.
    ACI MATERIALS JOURNAL, 2012, 109 (06) : 675 - 684
  • [42] Effects of Different Fibers and Cement Substituting Minerals on Mechanical Properties of Ultra-High- Performance Fiber-Reinforced Concrete
    Tabrizi, Nima Mohammadian
    Mostofinejad, Davood
    Eftekhar, Mohammad Reza
    ACI MATERIALS JOURNAL, 2023, 120 (05)
  • [43] Effects of brick-concrete aggregates on the mechanical properties of basalt fiber reinforced recycled waste concrete
    Yuan, Shucheng
    Li, Kunpeng
    Luo, Jiale
    Zhu, Zhanyuan
    Zeng, Yusheng
    Dong, Jiangfeng
    Liang, Wei
    Zhang, Fengyu
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [44] Static mechanical properties and mechanism of C200 ultra-high performance concrete (UHPC) containing coarse aggregates
    Lv Yujing
    Zhang Wenhua
    Wu Fan
    Wu Peipei
    Zeng Weizhao
    Yang Fenghao
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2020, 27 (01) : 186 - 195
  • [45] Three-dimensional mesoscopic investigation of the compression mechanical properties of ultra-high performance concrete containing coarse aggregates
    Feng, Taotao
    Jia, Mingkun
    Xu, Wenxiang
    Wang, Fengjuan
    Li, Penggang
    Wang, Xiaozhu
    Tan, Yongshan
    Jiang, Jinyang
    CEMENT & CONCRETE COMPOSITES, 2022, 133
  • [46] 3D Printed concrete with coarse aggregates: Built-in-Stirrup permanent concrete formwork for reinforced columns
    Chen, Yidong
    Zhang, Wenhua
    Zhang, Yunsheng
    Zhang, Yu
    Liu, Cheng
    Wang, Dafu
    Liu, Zhiyong
    Liu, Guojian
    Pang, Bo
    Yang, Lin
    JOURNAL OF BUILDING ENGINEERING, 2023, 70
  • [47] Influence of Annealing on Thermal Properties of Ultra High Performance Fiber Reinforced Concrete
    Zmeskal, Oldrich
    Pechackova, Katerina
    Florian, Pavel
    Pavlik, Zbysek
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [48] Effects of PVA fiber on shrinkage deformation and mechanical properties of ultra-high performance concrete
    Yao, Jie
    Ge, Yali
    Ruan, Wenqiang
    Meng, Jing
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 417
  • [49] PVA fiber reinforced red mud-based geopolymer for 3D printing: Printability, mechanical properties and microanalysis
    Han, Kang
    Gu, Fei
    Yang, Huashan
    Tian, Xinchen
    Du, Xiangqin
    JOURNAL OF BUILDING ENGINEERING, 2024, 97
  • [50] MECHANICAL AND SHRINKAGE BEHAVIOR OF BASALT FIBER REINFORCED ULTRA-HIGH-PERFORMANCE CONCRETE
    Nguyen Ngoc Lam
    Luong Van Hung
    INTERNATIONAL JOURNAL OF GEOMATE, 2021, 20 (78): : 28 - 35