Three-dimensional solitons in fractional nonlinear Schrodinger equation with exponential saturating nonlinearity

被引:3
|
作者
Lashkin, Volodymyr M. [1 ,2 ]
Cheremnykh, Oleg K. [2 ]
机构
[1] Inst Nucl Res, Pr Nauki 47, Kiev, Ukraine
[2] Space Res Inst, Pr Glushkova 40 K4-1, UA-03187 Kiev, Ukraine
关键词
Fractional nonlinear Schrodinger equation; Three-dimensional soliton; Saturating nonlinearity; Modulational instability; ITERATION METHOD; TURBULENCE; COLLAPSE;
D O I
10.1016/j.chaos.2024.115254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fractional three-dimensional (3D) nonlinear Schrodinger equation with exponential saturating nonlinearity. In the case of the Levy index alpha = 1 . 9 , this equation can be considered as a model equation to describe strong Langmuir plasma turbulence. The modulation instability of a plane wave is studied, the regions of instability depending on the Levy index, and the corresponding instability growth rates are determined. Numerical solutions in the form of 3D fundamental soliton (ground state) are obtained for different values of the Levy index. It was shown that in a certain range of soliton parameters it is stable even in the presence of a sufficiently strong initial random disturbance, and the self-cleaning of the soliton from such initial noise was demonstrated.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Defect solitons supported by optical lattice with saturable nonlinearity in fractional Schrodinger equation
    Wang, Shengyao
    Xia, Tuanjie
    Chen, Weijun
    Zhao, Peng
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [22] Vortex solitons in the (2+1)-dimensional nonlinear Schrodinger equation with variable diffraction and nonlinearity coefficients
    Xu, Siliu
    Petrovic, Nikola Z.
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2013, 87 (04)
  • [23] On nonlinear Sobolev equation with the Caputo fractional operator and exponential nonlinearity
    Binh, Ho Duy
    Huy, Nguyen Dinh
    Nguyen, Anh Tuan
    Can, Nguyen Huu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1492 - 1513
  • [24] Elliptic Solitons in (1+2)-Dimensional Anisotropic Nonlocal Nonlinear Fractional Schrodinger Equation
    Wang, Qing
    Deng, ZhenZhou
    IEEE PHOTONICS JOURNAL, 2019, 11 (04):
  • [25] Fractional optical solitons of the space-time fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Yu, Li-Jun
    Wang, Yue-Yue
    OPTIK, 2020, 207
  • [26] Direct perturbation method applied to three-dimensional nonlinear Schrodinger equation
    Cheng Xue-Ping
    Lin Ji
    Han Ping
    ACTA PHYSICA SINICA, 2010, 59 (10) : 6752 - 6756
  • [27] Three-Dimensional Structures of the Spatiotemporal Nonlinear Schrodinger Equation with Power-Law Nonlinearity in PT-Symmetric Potentials
    Dai, Chao-Qing
    Wang, Yan
    PLOS ONE, 2014, 9 (07):
  • [28] On the existence of gap solitons in a periodic discrete nonlinear Schrodinger equation with saturable nonlinearity
    Zhou, Zhan
    Yu, Jianshe
    Chen, Yuming
    NONLINEARITY, 2010, 23 (07) : 1727 - 1740
  • [29] GENERALIZED SOLITONS OF THE SCHRODINGER EQUATION WITH UNITARY NONLINEARITY
    FUK, VH
    CHETVERIKOV, VM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1978, 36 (03) : 779 - 783
  • [30] Defect solitons supported by nonlinear fractional Schrodinger equation with a defective lattice
    Meng, Yunji
    Ning, Renxia
    Ma, Kun
    Jiao, Zheng
    Lv, Haijiang
    Liu, Youwen
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2019, 28 (02)