CIRNet: An Interpretable Cross-Component Few-Shot Mechanical Fault Diagnosis

被引:0
|
作者
Ding, Xu [1 ]
Ying, JinTao [1 ]
Chen, GuanHua [1 ]
Xu, Juan [1 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Key Lab Knowledge Engn Big Data, Minist Educ, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Data models; Training; Feature extraction; Testing; Correlation; Task analysis; Backdoor adjustment; causal intervention; fault diagnosis; few-shot learning (FSL); metalearning;
D O I
10.1109/TR.2024.3432970
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, several few-shot learning (FSL) approaches for industrial equipment fault diagnosis have emerged to tackle the challenges posed by small fault diagnosis datasets. However, the existing FSL approaches model the correlation between input and output variables while ignoring causality, which cannot ensure that the diagnosis results are interpretable and robust. To tackle this problem, this article introduces a causal intervention relation network for cross-component few-shot fault diagnosis from the causal perspective. The model comprises a feature encoding module, a causal intervention module, and a relation measure module. The feature encoding module and the relation measure module establish a trainable similarity metric space through the training of multiple metatasks, where they learn the feature distances between sample pairs. Importantly, in causal intervention module, we model the causal structure of the metalearning process of few-shot fault diagnosis to find the causal fault features and the confounder factor, i.e., the metatraining diagnosis knowledge. Correspondingly a backdoor adjustment approach via a combination of class-based adjustment and feature adjustment is designed to realize the causal calibration of the few-shot fault diagnosis model. In such way, the model can capture causal invariant features between various components with significant distributional differences, thus enhancing the model's interpretability and its capacity for generalization. We perform experiments on two openly accessible datasets and a dataset constructed in our laboratory. The experimental results demonstrate that the model outperforms existing state-of-the-art approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Relation Awareness Network for Few-Shot Fine-Grained Fault Diagnosis
    Xu, Yan
    Ma, Xinyao
    Wang, Xuan
    Wang, Jinjia
    Tang, Gang
    Ji, Zhong
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 20949 - 20958
  • [42] Few-Shot power transformers fault diagnosis based on Gaussian prototype network
    Deng, Wenhan
    Xiong, Wei
    Lu, Zhiyang
    Yuan, Xufeng
    Zhang, Chao
    Wang, Le
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 160
  • [43] Prototype matching-based meta-learning model for few-shot fault diagnosis of mechanical system
    Lin, Lin
    Zhang, Sihao
    Fu, Song
    Liu, Yikun
    Suo, Shiwei
    Hu, Guolei
    NEUROCOMPUTING, 2025, 617
  • [44] Few-shot fault diagnosis method for rolling bearing using local descriptors
    An, Langfei
    Jia, Feng
    Wang, Bo
    Hou, Jingru
    Shen, Jianjun
    Song, Xuding
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1381 - 1386
  • [45] Few-shot learning fault diagnosis of rolling bearings based on siamese network
    Zheng, Xiaoyang
    Feng, Zhixia
    Lei, Zijian
    Chen, Lei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [46] Augmentation-based discriminative meta-learning for cross-machine few-shot fault diagnosis
    Xia, PengCheng
    Huang, YiXiang
    Wang, YuXiang
    Liu, ChengLiang
    Liu, Jie
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (06) : 1698 - 1716
  • [47] An enhanced meta-learning network with sensitivity penalty for cross-domain few-shot fault diagnosis
    Mu, Mingzhe
    Jiang, Hongkai
    Jiang, Wenxin
    Dong, Yutong
    Wu, Zhenghong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [48] Transfer multiscale adaptive convolutional neural network for few-shot and cross-domain bearing fault diagnosis
    Li, Fan
    Wang, Liping
    Wang, Decheng
    Wu, Jun
    Zhao, Hongjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [49] Augmentation-based discriminative meta-learning for cross-machine few-shot fault diagnosis
    XIA PengCheng
    HUANG YiXiang
    WANG YuXiang
    LIU ChengLiang
    LIU Jie
    Science China(Technological Sciences), 2023, (06) : 1698 - 1716
  • [50] A novel multiple-prototype and domain adversarial network for few-shot cross-domain fault diagnosis
    Shi, Peiming
    Dai, Siyu
    Xu, Xuefang
    Han, Dongying
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (03)